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Abstract 

 We develop a rule-based system for the purpose of analyzing musical examples to 

extract probabilistic rules of harmony; these rules are then used to generate new harmony 

in response to a melody input in real-time.   A representation of music derived from the 

figured bass is developed which is suitable for embodying the harmonic content of a 

piece of music in a format suitable for machine learning.  Algorithms are developed to 

convert music between this representation and standard MIDI files.  An efficient 

algorithm for extracting raw rules from examples is presented, along with a comparison 

of its behavior to alternative methods such as hashing and hybrid algorithms.  Processes 

to refine the rules produced by the previous algorithm into a more compact representation 

are shown, including considerations for weighting rules based on the types of errors they 

make in addition to their accuracy.  Psychophysics experiments are performed to measure 

the perception of harmonic errors.  The results of these experiments allow the 

development of new algorithms to generate rules which make less noticeable errors.  The 

techniques developed above are used to build a rule-based system for real-time 

accompaniment. 
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CHAPTER 1 

Introduction 

 Human understanding and intuition of music is often supported by substantial 

intuition developed as the result of extensive study of and experience with music 

(Alphonse, 1980).  However, even the collective observations of hundreds of years of 

musical study are insufficient to provide a theory of musical composition complete 

enough to generate new music in the absence of human intuition (Loy, 1991)(Rothgeb, 

1968).  Recent advances in rule-based data mining algorithms allow a more thorough 

analysis of music to derive the underlying rules of music theory.  These learned rules can 

then be applied in real-time to generate new music in a similar style. 

1. Overview 

 The remainder of this chapter serves to introduce the problem of analysis and 

real-time generation of harmony, and discusses the choice of music studied.  The main 

body of this work begins in Chapter 2 with the evolution of the Extended Figured Bass 

representation for musical harmony.  Chapter 3 defines the type of rules used in our 

learning system, and describes how they are used to inference results.  The hashing and 

SpanRULE algorithms for quickly searching through an example set to extract unrefined 

rules are analyzed and compared in Chapter 4.  This is followed in Chapter 5 by several 

methods which can be applied to those rules to refine them into a more compact 

representation of knowledge.  The perception of harmonic errors by human listeners is 

covered in Chapter 6, including derivation of a chord misclassification error table.  The 
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techniques described in Chapters 2 through 6 are used to build a rule-based system for 

generation of Bach harmony, which is described and analyzed in Chapter 7.  Conclusions 

are discussed as they naturally arise in each chapter.  These are summarized in Chapter 8 

and wider implications are discussed. 

2. Constraints Imposed by Real-Time Functionality 

 A program which is to provide real-time harmony to accompany musicians at live 

performances faces several constraints.  First, it must be fast enough to generate 

accompaniment without detectable delay between the musician playing the melody and 

the algorithm generating the corresponding harmony.  This limits the complexity of the 

algorithm and the amount of information it can process for each timestep.  Second, the 

algorithm must base its output only on information from previous timesteps.  This 

differentiates our system from HARMONET (Hild et al., 1992) which required 

knowledge of the next note in the future before generating harmony for the current note.  

Third, the algorithm must be largely autonomous. It must not require constant attention 

by the performer to produce acceptable output, and must be robust enough that any errors 

it does produce are of a sort which are not as musically "bad" as other errors. 

3. Advantages of a Rule-Based Algorithm 

 A rule-based neural network algorithm was chosen over a recurrent network or a 

non-linear feed-forward network.  Neural networks have been previously used for 

harmonizing music with some success (Mozer and Soukup, 1991) (Shibata, 1991) (Todd, 

1989).  However, rule-based algorithms have several advantages when dealing with 

music.  Almost all music has some sort of rhythm and is tonal, meaning both pitch and 
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duration of individual notes are quantized.  This presents problems in the use of 

continuous networks, which must be overtrained to reasonably approximate discrete 

behavior.  Rule-based systems are inherently discrete, and do not have this problem. 

 Another advantage of a rule-based network is that it is straightforward to 

determine why the system produced a given result by examining the rules which fired.  

This has advantages in the development of the algorithm, since it is easier to determine 

where mistakes are being made.  It allows comparison of the results to existing 

knowledge of music theory as shown below, and may provide insight into the theory of 

musical composition beyond that currently available.  Conversely, it is very difficult to 

determine why a non-linear multi-layer network makes a given decision or to extract the 

knowledge contained in such a network. 

4. Choice of Music to Study 

 Chorale melodies harmonized by Johann Sebastian Bach were used as the input 

for the learning system.  These are short (8 to 40 measure) pieces with a number of 

desirable characteristics.  The rules of harmony which Bach used have been studied 

extensively by music theoreticians, so there is an existing base of knowledge to compare 

with the rules extracted in the course of research (Grout and Palisca, 1988).  The pieces 

usually remain in one key and have few unresolved dissonances, making them easier to 

analyze.  They have little rhythmic variation, and the harmonic content usually changes 

on a beat-by-beat basis; this reduces the time scale over which learning must be done to a 

few chords instead of several measures of music.  Chorales have four voices, meaning 

that at any point in time, exactly four notes are being played.  This simplifies chord 
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analysis, since the four voices usually form complete chords where all pitches for a given 

chord are present; for example, if a C Major chord were being played, there would be at 

least one C, one E, and one G being played).  This also usually means that the combined 

pitches for the voices will match only one chord type at a time.  The first few measures of 

Bach Chorale no. 1 are shown in Figure 1.1. 
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Figure 1.1: Bach Chorale no. 1 
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CHAPTER 2 

Representation of Music 



 7 

 To extract useful information examples, it is necessary to choose a representation 

for those examples that accentuates the features being studied.  In the case of musical 

harmony, the representation requires the following features.  The representation needs to 

explicitly specify harmonic information; it needs to treat music as a progression of 

chords, as opposed to a collection of individual notes.  Furthermore, the representation 

needs to be such that similar-sounding harmonies are represented similarly, and different-

sounding harmonies are represented differently. 

1. Existing Electronic Representations of Music 

1.1. MIDI 

 The Musical Instrument Digital Interface (MIDI) file format is a specification for 

storage and transmission of musical data (MIDI Manufacturers Association, 1988).  It 

was chosen as the medium for externally storing pieces of music because of its 

widespread use in the electronic music community, compatibility with existing 

sequencing software, and flexibility. 

 MIDI data is arranged as a stream of events, separated by delta times.  This makes 

it ideal for sequencing applications where the goal is to send those events to synthesizers 

and effects generators. A typical stream of MIDI data is shown in Figure 2.1.  The 

significant MIDI events are listed in Table 2.1. 



 8 

 

Header format=0 ntrks=1 division=240 
Track start 
Delta time=0  Time signature=3/4  MIDI-clocks/click=24  32nd-
notes/24-MIDI-clocks=8 

Delta time=0  Tempo, microseconds-per-MIDI-quarter-note=41248 
Delta time=0  Meta Text, type=0x01 (Text Event)  leng=23 
     Text = <Chorale #001 in G Major> 
Delta time=480  Note on, chan=1 pitch=67 vol=88 
Delta time=0  Note on, chan=2 pitch=62 vol=72 
Delta time=0  Note on, chan=3 pitch=59 vol=88 
Delta time=0  Note on, chan=4 pitch=43 vol=65 
Delta time=240  Note off, chan=4 pitch=43 vol=64 
Delta time=0  Note off, chan=3 pitch=59 vol=64 
Delta time=0  Note off, chan=2 pitch=62 vol=64 
Delta time=0  Note off, chan=1 pitch=67 vol=64 
Delta time=0  Note on, chan=1 pitch=67 vol=81 
Delta time=0  Note on, chan=2 pitch=62 vol=75 
Delta time=0  Note on, chan=3 pitch=59 vol=88 
Delta time=0  Note on, chan=4 pitch=55 vol=60 
Delta time=240  Note off, chan=4 pitch=55 vol=64 
Delta time=0  Note off, chan=3 pitch=59 vol=64 
Delta time=0  Note off, chan=2 pitch=62 vol=64 
Delta time=0  Note on, chan=2 pitch=64 vol=58 
Delta time=0  Note on, chan=3 pitch=60 vol=78 
Delta time=1920  Meta Text, type=0x01 (Text Event)  leng=7 
     Text = <Fermata> 

Figure 2.1: Example MIDI Data 

 
 

Table 2.1: Significant MIDI Events 

Event Function Relevant Parameters Meaning 
Time signature Gives information about 

the timing of the piece 
Time signature needed to convert beats into 

measures, determine beat 
accents 

  32nd-notes/24-MIDI-clocks needed to convert current 
time into beat number 

Note on / Note 
off 

Turns a note on or off for 
a specific voice 

Channel which voice is changing 
(1=soprano, 2=alto, 
3=tenor, 4=bass) 

  Pitch which note is changing 
(pitch=60 is middle C) 

Meta Text Allows arbitrary messages 
to be sent 

Text “Chorale #001 in G Major” 
gives the name and key of 
the piece.  “Fermata” states 
that there is a fermata on the 
chord starting at that time. 
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 There are several reasons MIDI data is not suitable for use as input for musical 

analysis. First, it is difficult to tell which notes are being played at a given point in time.  

The durations of notes are not explicitly coded.  Second, it is equally difficult to 

determine rhythmic structure.  Last, the format is extremely sensitive to the exact notes 

being played.  If a piece is transposed up a semitone (from C to C-sharp, for example), 

every single pitch in the MIDI data changes.  Even minor changes in the voicing of a 

chord have radically different representations in the MIDI data.  For example, a C Major 

chord (C, E, G, C) could consist of pitches {60, 64, 79, 84}, or {67, 72, 76, 84}.  The two 

voicings sound almost identical and have similar functions, but share only one common 

pitch.   

1.2. Generalized Electronic Representations for Composition and Analysis 

 Several generalized representations for music have been proposed.  These 

representations are often phrased in deeply-nested hierarchical structures (Smaill et al., 

1993) or LISP-like lists (Brinkman, 1986), and treat musical information as collections of 

notes and modifiers.  Others use semantic nets to hold the musical information (Camurri 

et al., 1993).  While superior to MIDI for analyzing music, these representations are too 

general, and do not state specific harmonic representations clearly enough to be useful in 

learning probabilistic rules. 

2. Figured Bass 

 Figured bass is a form for representing harmony that has been used since the early 

Baroque period (early 17th century).  It focuses attention on the melody line, harmonic 

function of each harmony chord, and the bass line; the exact positions of the inner voices 
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were considered less important.  It consists of a melody line, and a chord notation 

consisting of Roman numerals for the chords, sometimes with small Arabic numerals to 

provide more information about how the chord should be voiced (Grout and Palisca, 

1988). 

 A modern-day equivalent of figured bass can be found in the "fake books" sold at 

music stores.  These give the melody and chords in letter notation (Cm for C-minor, for 

example), but contain even less information about the voicing of the chord than the 

Baroque figured bass.  These are often used by pianists hired to play at events, so that 

they can respond to requests for songs.  The pianists are capable of filling in interesting 

harmony based on the melody and the chord. 

 Figured bass is a good representation for harmonic information; however, it is 

incomplete.  This was a desirable feature in the Baroque period, since it allowed 

individual performers to distinguish themselves by playing the same piece in different 

ways.  However, it requires a great deal of musical background and prior information to 

adequately translate, or realize the figured bass into full four-part harmony. 

3. Extended Figured Bass 

 The extended figured bass format concisely states the harmonic content and 

rhythmic information for an accompaniment.  Music is organized in terms of chords and 

beats instead of individual note on/off events.  A typical extended figured bass is shown 

in Figure 2.2; the MIDI data in Figure 2.1 corresponds to the first few chords of this 

figured bass.  This is similar to the Baroque figured bass discussed above, with additional 

attributes for each chord which specify all of the voice positions for the chord.   
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MEL FUNC    BP TP AP SP  DUR ACC  OCTAVE 
---------------------------------------- 
C   I       B0 T1 A2 S0  2   un   4 
---------------------------------------- 
C   I       B0 T1 A2 S0  2   ACC  4 
C   IV      B1 T0 A1 S2  1   un   4 
C   vi      B0 T2 A0 S1  1   n    4 
G   V       B1 T2 A0 S0  2   un   4 
---------------------------------------- 
E   I       B0 T0 A2 S1  2   ACC  4 
E   iii     B1 T2 A1 S0  1   un   4 
D   V       B0 T1 A0 S2  1   n    4 
C   vi      B0 T1 A2 S1  2   un   4 
---------------------------------------- 
C   IV      B0 T0 A1 S2  1   ACC  4 
C   -       -  -  -  -   1   n    4 
C   -       B3 T0 A1 S2  1   un   4 
D   vii07   B1 T2 A0 S1  1   n    4 
E   I       B0 T2 A0 S1  2   un   4 
---------------------------------------- 
D   V       B0 T0 A1 S2  4   FERM 4 

Figure 2.2: Example of Extended Figured Bass 
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 The extended figured bass format always represents music in terms of the key C-

major.  This is easier for an observer or user to visualize and understand, since it is the 

simplest key (since it has no sharps or flats).  It also simplifies learning from extended 

figured bass examples, since C is always the first scale step in the key.  Music in other 

keys is transposed to the key of C when it is placed in extended figured bass format, and 

transposed back when it is translated from extended figured bass to some other format. 

 Alternately, the melody can be represented as a number of semitones above the 

root of the key.  For example, in the key of G-major, G=1, G-sharp=2, A=3, etc.  While 

this provides true key-independence of the representation, it also proved to be much more 

difficult to read. 

 The extended figured bass consists of the following attributes. 

3.1. Melody 

 Melody (MEL) is the pitch played by the soprano voice.  This is the most 

important of the four voices.  Harmony is generated downwards and built off of the 

melody. 

 The extended figured bass format separates the scale step of the melody (C, C#, 

D, etc.) from the octave of the melody note (4th, 5th, etc.).  This reduces the number of 

different symbols which the melody attribute can take down to the twelve different scale 

steps present in western music.  The octave is retained as a separate attribute (see below). 
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3.2. Chord Function 

 A chord function (FUNC) is uniquely determined by the tones which form it.  For 

example, if the tones F, A, and C are present, the chord is determined to be a F-major 

chord, which is notated by the Roman numeral IV. 

 The most common functions in a major key in the works of Bach are listed in 

Table 2.2.  The chord names and pitches shown assume the key is C major, as the 

extended figured bass requires.  Other less common functions also exist; however, the 

chords shown in the table are sufficient to classify 98% of the chord tones in Bach 

chorales.  If a chord cannot be classified into a known function, its function is left blank.  

This chord is probably the result of a passing tone or other non-chord tone. 
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Table 2.2: Common Chord Functions in a Major Key 

Function Chord Name Pitches 
I C Major C, E, G 
I7 C7 C, E, G, B-flat 
ii D minor D, F, A 
V/V D Major D, F-sharp, A 
V7/V D7 D, F-sharp, A, C 
iii E minor E, G, B 
V/vi E Major E, G-sharp, B 
V7/vi E7 E, G-sharp, B, D 
IV F Major F, A, C 
vii07/V F-sharp diminished 7th F#, A, C, E-flat 
V G minor G, B-flat, D 
V G Major G, B, D 
V7 G7 G, B, D, F-sharp 
vi A minor A, C, E 
V/ii A Major A, C-sharp, E 
V7/ii A7 A, C-sharp, E, G 
IV/IV B-flat Major B-flat, D, F 
vii07 B diminished 7th B, D, F, A-flat 
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3.3. Voice Positions 

 Bach harmony has four voices.  From lowest to highest, these are bass, tenor, alto, 

and soprano.  These can be represented as tones such as F, A, or C, or as positions within 

a chord function, such as 0, 1, or 2 in the chord function F-major. 

 Voices are represented as positions, since this reduces the number of possible 

values each voice can have.  In western music, there are 12 tones: C, C#, D, D#, E, F, F#, 

G, G#, A, A#, B.  However, there are only 4 voice positions: 0, 1, 2, 3, corresponding to 

the four tones in each chord function.  To reduce confusion, voice positions are prefixed 

by the first letter of the voice name (B, T, A, or S). 

 Given a chord function (determined in the above section), we can determine the 

position of a voice from its tone by a simple lookup in Table 2.2.  For example, if we 

have the chord function V7 (G7), we see from the table that the tones for that chord 

function are 0=G, 1=B, 2=D, and 3=F#.  So if the voice’s tone is G, it is given a position 

of 0; if the voice’s tone is B, it is given a position of 1; and so on.  If the voice in question 

were the bass, the voice position would be labeled “B0” or “B1” respectively.  If the 

voice in question were the soprano, the voice position would be labeled “S0” or “S1” 

respectively. 

 Given a chord function, we can determine the tone of a voice given its voice 

position.  For example, if we have the same V7 chord function, then the voice position 

A0 corresponds to a “G” in the alto, since A=alto and G is the first chord tone for V7.  

Similarly, voice position T3 would correspond to “F#” (tone 3 for the chord function V7) 

in the tenor. 
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3.4. Duration 

 The duration (DUR) is simply the length of the chord in eighth notes. 

3.5. Accent 

 The accent (ACC) is the accent to be placed on the chord.  There are four 

different strengths of accent.  “FERM” is the strongest accent, and represents a fermata 

(or held chord) at the end of a phrase of music.  “ACC” indicates the chord begins at the 

start of an accented beat.  “un” indicates a chord beginning on an unaccented beat.  

Lastly, “n” is used to represent a chord which does not begin at the start of a beat.  

Chords with stronger accents tend to be less dissonant; most pieces end on a fermata to 

give a solid finish to the music. 

 The accent pattern for a measure is completely deterministic on the style of music 

and the time signature for the measure.  For example, 4:4 time accents the first and third 

beats in a measure.  This gives the following accent pattern in beats (ACC=accented beat, 

un=unaccented beat): 

ACC-un-ACC-un 
 

 To allow for more frequent and interesting note changes in a piece, there are two 

eighth-note-long timesteps per beat.  The second timestep in the beat is not at the start of 

a beat at all.  This gives the following accent pattern in timesteps (n=not start of beat): 

ACC-n-un-n-ACC-n-un-n 
 

 A similar measure in 3:4 time has the following accent pattern in eighth-note 

timesteps (this is the example given in the paper): 

ACC-n-un-n-un-n 
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 Other accent patterns are used in other styles of music.  For example, a 

syncopated piece of music in 4:4 time might have an accent pattern such as: 

ACC-n-n-un-ACC-n-n-un 
 

 The accent pattern serves as a way to know which timesteps are more musically 

relevant to the listener’s sense of melody and key.  The more accented a timestep is 

(FERM=most, n=least), the more a listener will focus on it; an awkward or misplaced 

note on an accented beat is certain to be noticed.  In Bach harmony, accented beats 

almost always contain stable chords in the key of the melody. 

4. Windowed Example List 

 Before rules can be generated, it is necessary to create examples from the figured 

bass data.  Each example must contain all the data necessary to agree or disagree with a 

potential rule, including information about previous timesteps.  Examples in the list may 

also be weighted, so that they count for more or less than a normal example; this is useful 

when learning rules in beat-based conversion (see Section 6.1). 

 For each chord, an input window was generated which included the current 

melody note and harmony information (shown in yellow) and the previous two timesteps 

of information.  This windowed approach to scanning music has been shown to be 

sufficient to capture harmonic information, and can be thought of as analogous to short-

term memory (Jones et al., 1993).  The input window used is shown in Figure 2.3.  

 A portion of a typical example list used in generating harmony rules is shown in 

Figure 2.4.  The first section of the example list provides in order the names of the fields 

in an example.  Following this are examples at one example per line.  Note that some 
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examples in this list have twice the weight of other examples.  Each example contains 

information about the melody and chord function used at the current time and the 

previous two timesteps. 
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CG
V
S0
B0
A1
T0

C
vi
S1
I0
A0
T2

Melody
Function
Soprano
Bass
Alto
Tenor  

Figure 2.3: Input Window Used by Algorithm 

 

%NAME  0 Weight 
%NAME  1 Duration0 
%NAME  2 Melody2 
%NAME  3 Melody1 
%NAME  4 Melody0 
%NAME  5 Function2 
%NAME  6 Function1 
%NAME  7 Function0 
1.0  1   C   C   C   I        I        IV        
1.0  1   C   C   C   I        I        vi        
1.0  2   C   C   G   I        IV       V         
1.0  2   C   C   G   I        vi       V         
1.0  2   C   G   E   IV       V        I         
1.0  2   C   G   E   vi       V        I         
1.0  1   G   E   E   V        I        iii       
1.0  1   G   E   D   V        I        V         
1.0  2   E   E   C   I        iii      vi        
1.0  2   E   D   C   I        V        vi        
0.5  1   E   C   C   iii      vi       IV        
0.5  1   D   C   C   V        vi       IV        
0.5  1   C   C   D   vi       IV       vii07     
0.5  2   C   D   E   IV       vii07    I         
1.0  4   D   E   D   vii07    I        V         

Figure 2.4: Typical Example List 
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5. Conversion from MIDI to Extended Figured Bass 

 To convert from MIDI format into a figured bass, an algorithm scans through the 

MIDI file and determines which notes the voices (bass, tenor, alto, soprano) are playing 

at which times.  It extracts the key of the piece from an initial text event, and transposes 

the piece to the key of C Major, changing all pitches appropriately; this simplifies 

analysis of the data by making it easier to compare pieces.  It then segments the piece into 

chords by beginning a new chord whenever a voice changes pitch.   

 This algorithm has one significant weakness in that it always treats passing tones 

and other ornaments as starting new chords, though they actually may serve no harmonic 

function.  The best alternative from a musical standpoint would be to hand-code an 

algorithm to detect ornament-based chords and remove them; however, this would defeat 

one of the primary research goals of requiring no explicitly hand-coded musical 

knowledge.  Currently, two fully automated schemes (beat-based and chord-based 

conversions) have been used to minimize the effects of this weakness.  
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TIME DUR   B   T   A   S      
000  ----------------------   
004  2   { C3  E4  G4  C5  }  
006  ----------------------   
006  2   { C4  E4  G4  C5  }  
008  1   { A3  F4  A4  C5  }  
009  1   { A3  E4  A4  C5  }  
010  2   { B3  D4  G4  G5  }  

Figure 2.5: Input – Segmented into Chords 

 

Table 2.3: Beat Accents vs. Timesteps for 3:4 Time 

Time Accent 
6n + 0 ACC 
6n + 1 n 
6n + 2 un 
6n + 3 n 
6n + 4 un 
6n + 5 n 

  
 
 
 
 

TIME DUR   B   T   A   S     MEL ACC  
000  -------------------------------- 
004  2   { C3  E4  G4  C5  } C   un   
006  -------------------------------- 
006  2   { C4  E4  G4  C5  } C   ACC  
008  1   { A3  F4  A4  C5  } C   un   
009  1   { A3  E4  A4  C5  } C   n    
010  2   { B3  D4  G4  G5  } G   un   

Figure 2.6: Input – With Accent Information 
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 Once a piece of music has been segmented into chords, it looks like Figure 2.5.  

Each line represents one timestep and one chord.  It contains information about the time 

the chord was started, its duration, and which note is being played in each voice.  The 

next step is to determine the melody pitch.  This is trivial, since it is just the soprano note 

without the octave.  At this time, the algorithm also determines the accent of each chord.  

This is based on the time a chord starts and the time signature for the piece.  In 3:4 time 

(the time signature for this example), a measure is 6 timesteps long.  Accented beats 

occur every 6 timesteps, and unaccented beats occur every 2 timesteps.  In Table 2.3, n is 

an integer representing the measure number.  Fermatas are indicated by a text event in the 

MIDI data at the same time the chord starts (see the MIDI file format section for an 

example.)  Fermatas represent strong chords at the ends of phrases of music, and are the 

strongest sort of accent.  With melody and accent information, the data looks Figure 2.6. 

 The algorithm then attempts to determine the root and type of chord is being 

played by comparing each timestep with 120 common chords looking for a match.  (This 

number of chords is sufficient to identify 99% of all chords occurring in Bach’s music.)  

If all pitches being played could be part of a chord, the timestep is identified as that 

chord.  For example, the chord at time=008 is identified as a F Major chord because all 

its pitches are either F, A, or C.  If a chord cannot be identified, all its remaining fields 

are left unknown and processing starts on the next chord; this usually indicates that the 

chord was formed from a passing tone or other ornament and has no significant function 

in the piece anyway.  The data now looks like Figure 2.7. 
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TIME DUR   B   T   A   S     MEL ACC RT TYPE 
000  ---------------------------------------- 
004  2   { C3  E4  G4  C5  } C   un  C  Major 
006  ---------------------------------------- 
006  2   { C4  E4  G4  C5  } C   ACC C  Major 
008  1   { A3  F4  A4  C5  } C   un  F  Major 
009  1   { A3  E4  A4  C5  } C   n   A  Minor 
010  2   { B3  D4  G4  G5  } G   un  G  Major 

Figure 2.7: Input – With Identified Chord 

 
 
 
 

TIME DUR   B   T   A   S     MEL ACC RT TYPE  IN TP AP SP 
000  ---------------------------------------------------- 
004  2   { C3  E4  G4  C5  } C   un  C  Major I0 T1 A2 S0 
006  ---------------------------------------------------- 
006  2   { C4  E4  G4  C5  } C   ACC C  Major I0 T1 A2 S0 
008  1   { A3  F4  A4  C5  } C   un  F  Major I1 T0 A1 S2 
009  1   { A3  E4  A4  C5  } C   n   A  Minor I0 T2 A0 S1 
010  2   { B3  D4  G4  G5  } G   un  G  Major I1 T2 A0 S0 

Figure 2.8: Input – With Voice Positions 

 
 
 
 

MEL FUNC    IN TP AP SP  DUR ACC  
--------------------------------- 
C   I       I0 T1 A2 S0  2   un    
--------------------------------- 
C   I       I0 T1 A2 S0  2   ACC  
C   IV      I1 T0 A1 S2  1   un    
C   vi      I0 T2 A0 S1  1   n    
G   V       I1 T2 A0 S0  2   un    

Figure 2.9: Input - Extended Figured Bass 
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 The next step is to determine the position of each voice.  This is done by 

comparing the pitch of each voice with the allowed pitches for the chord and determining 

which chord note each voice is playing.  The chord at time=008 has pitches {A, F, A, C}, 

which correspond to positions {I1, T0, A1, S2}.  Now the data has the form shown in 

Figure 2.8. 

 The final step is to identify the function of each chord.  This is done by comparing 

the root and type of each chord with a table of common functions (a portion of the table is 

shown in the section on figured bass notation above).  If a chord does not match any of 

the common functions, its function is left unknown.  As when the chord type was not 

identifiable, this chord probably is a result of an ornamental and serves no harmonic 

function. 

 At this point, the fields for absolute time and voice pitch can be removed, since 

they are not part of the figured bass notation.  This has the side effect of losing 

information on voice leading and counterpoint, and also on the overall structure of the 

piece.  However, the effect on the harmony rules currently being investigated has proved 

to be small.  The final extended figured bass is shown in Figure 2.9. 

6. Conversion from Extended Figured Bass to Windowed Example List 

 Examples are generated from a figured bass by moving a window down the list of 

chords and copying certain fields at each timestep.  For example, an example list with the 

fields Function0 and Function1 (meaning the chord functions at the current and previous 

timestep) generated from the figured bass in the previous section would look like Figure 
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2.10.  Note that for the first example, the function for the previous timestep is unknown 

because the chord is at the beginning of the piece. 

 Unfortunately, not all chords in the modified figured bass generated by the MIDI 

to figured bass algorithm are harmonically significant.  Because that algorithm is unable 

to distinguish and remove passing tones and other ornaments, extra chords are present.  

Two schemes are used to minimize the effects of that shortcoming on the example set; 

these schemes are discussed below. 
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%NAME 0 Function1 
%NAME 1 Function0 
-  I 
I  I 
I  IV 
IV vi 
vi V 

Figure 2.10: Windowed Example List 

 
 
 
 

%NAME 0 Weight 
%NAME 1 Function1 
%NAME 2 Function0 
1.0 - I 
1.0 I I 
0.5 I IV 
0.5 I vi 
0.5 IV V 
0.5 vi V 

Figure 2.11: Beat-Based Example List 

 
 
 

%NAME 0 FunctionLastAccentedBeat 
%NAME 1 FunctionLastBeat 
%NAME 2 Function1 
%NAME 3 Function0 
- - - I 
- I I I 
I I I IV 
I IV IV vi 
I IV vi V 
 

Figure 2.12: Accent-Based Example List 
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6.1. Beat-based Conversion 

 This scheme takes advantage of the fact that harmonic function usually changes 

between beats, but not within a single beat.  Ornaments usually comprise only half of a 

beat, and the chords formed from them are less correlated with the surrounding music 

than the chords comprising the other half of the beat are.  Thus, examples which include 

information from ornament chords will not correlate well with other examples and will 

produce only weak rules. 

 The beat-based algorithm is more complex than the chord-based algorithm 

because it must look at each chord for a beat and generate an example assuming that 

chord was the “real” chord for that beat.  All examples for a timestep must then have their 

weights normalized so that the total weight for each timestep is one.  The segment of 

figured bass used in Figure 2.10 would generate the beat-based example list shown in 

Figure 2.11. 

 This seems fairly straightforward when the examples are using only one previous 

beat of data.  If, on the other hand, an example set was built from the current beat and 

four previous beats, and each beat had two chords (an ornament chord and the real 

chord), then each beat would result in (2⋅2⋅2⋅2⋅2) = 32 examples, each with weight 

0.03125.  This results in an example set which uses a great deal more memory.  Beat-

based conversion is therefore well-suited only to those example sets with a small time 

window. 
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6.2. Accent-based Conversion 

 The counterpart to beat-based conversion, accent-based conversion takes 

advantage of the fact that ornaments typically occur in the middle of beats or, less 

commonly, at the start of unaccented beats. Ornaments are only rarely placed at the start 

of accented beats, and never at the start of a fermata.  Accent-based conversion allows 

additional example fields to be created for previous timesteps which started at the 

beginning of a beat, accented beat, or fermata.  Since only one example is created per 

timestep, it is not necessary to weight the examples.  The examples created from the 

segment of figured bass in Figure 2.10 are shown in Figure 2.11. 

 Note that it is possible for the first three fields to refer to the same timestep if the 

previous timestep was at the start of an accented beat.  This redundancy can lead to the 

generation of highly interdependent rules, making independence pruning (see Chapter 5) 

essential. 

7. Conversion from Extended Figured Bass to MIDI 

 The algorithm used to inference the harmony for a melody results in the 

generation of a figured bass.  It is necessary to convert that figured bass back into MIDI 

data so that the harmony can be played on a synthesizer.  The process for creating the 

MIDI data, or realizing the figured bass, is as follows.  For each timestep: 

1) Use the table of common functions to determine which pitches should be played for 

the chord. 

2) Use the voice position fields to determine the pitch played by each voice. 
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3) Starting at just below the melody note, which is known (it was used as the input to the 

harmonizing algorithm), search down the scale until an unplayed note matching the 

alto’s pitch is found.  Send the MIDI code to turn that note on. 

4) Repeat for tenor and bass notes. 

5) Send the MIDI code for a delay equal to the note’s duration. 

6) Turn the notes off. 

 For example, take the following timestep: 

 
MEL FUNC    IN TP AP SP  DUR ACC  
--------------------------------- 
E   iii     I2 T1 A1 S0  1   un    

Figure 2.13: Example Timestep 

 The table of common functions shows the “iii” chord has the pitches {E, G, B}.  

Based on the positions {I2, T1, A1, S0}, the voices will be playing (in order) {B, G, G, 

E}.  Note the soprano pitch agrees with the melody field.  If the melody note were at 

octave 5, this algorithm would turn on the notes {E5, G4, G3, B2}.  In either case, 

ADMIRE would then send a delay corresponding to a duration of one eighth note, then 

turn the notes off.  This algorithm assumes that pitches are never doubled.  This is an 

acceptable assumption, since shifting notes down an octave does not significantly change 

the feel of the chord. 
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CHAPTER 3 

Representation of Knowledge 
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 Our system represents learned knowledge in the form of sets of parallel 

probabilistic rules.  When input is received, all rules are fired in parallel to generate an 

output.  This is more robust than representing rules in a many-layered decision tree 

(Kohonen et al., 1991), where a single bad rule can inhibit processing of many 

worthwhile rule deeper in the tree. 

1. Definition of a Rule 

Throughout the rest of this document, the terminology in Table 3.1 is used.  Figure 3.1 

shows an example of a rule with Order = 2. 
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Table 3.1: Terminology of Rules 

Left-Hand Side (LHS) Conditions that must be true for the rule to fire. 
Right-Hand Side (RHS) Result predicted by rule. 
Order The number of attribute=value pairs on the LHS. 
Pfire The probability the rule is able to fire. 
Pcorrect  The probability the rule is correct if it fires. 
Priority The overall value of the rule over the entire input domain; 

several priority types are discussed below.   
Weight The value of the rule over the subset of the input domain 

where the LHS of the rule applies. 
 
 
 
 
 
 

IF YA=y1 AND YB=y2 THEN X=x3 WITH Priority P, Weight W 

Figure 3.1: Example of a Rule with Order=2 
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2. Inferencing Using Rules 

When a ruleset is used to infer a RHS value, each rule in the ruleset is checked in order of 

decreasing rule Priority.  A rule can fire if it has not been marked dependent (see the next 

section on independence pruning) and all the attributes on its LHS are known.  When a 

rule fires, its weight is added to the weight of the RHS value which it predicts.  After all 

rules have had a chance to fire, the result is an array of weights for all possible values of 

the RHS attribute. 

 If all rules which fire on a given example inference the same RHS value, the 

result of the inference is clear.  But if two or more rules fire and inference a number of 

different RHS values, one of two algorithms must be used to resolve the conflict.  In 

either case, the weights of all rules inferencing a given RHS are accumulated to produce 

the weight of that RHS. 

 The simpler algorithm is termed “best-only.”  The RHS with the highest weight is 

always chosen.  This is the most correct method from the standpoint of probability 

theory.  However, this tends to lead to monotonous music, since a given melody will 

always be harmonized in the exact same fashion.  Furthermore, there is no single right 

way to harmonize any given melody (Shibata, 1991).  Several identical chorale melodies 

are harmonized by Bach in two or more ways in his collection of harmonized chorales 

(Bach, 1941).  These problems led to the development of a second algorithm. 

 The other option is to select between the possible RHS values based on a set of 

transition probabilities.  The accumulated weights for the RHS values are exponentiated 

and normalized to produce probabilities for each value.  The RHS value to be used is 
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chosen randomly based on these probabilities.  It is important to note that the algorithm 

only chooses between values which had rules fire, not all possible values for the RHS 

attribute.  Otherwise, there would always be a non-zero probability of picking any RHS 

value, even if no rules fired for that value. 

 If no rules for a given ruleset fire, there are two possibilities.  If it is not the last 

part of a series of segmented rulesets, the next segmented ruleset will be given a chance 

to fire.  If the ruleset is the last in the series, or is not part of a series of segmented 

rulesets, the RHS value is set to the most likely value of the RHS attribute based on the 

attribute’s prior probability distribution.  This is equivalent to classifying the RHS 

attribute with a zeroth-order Bayesian classifier. 

 This last problem can be avoided by training a first-order Bayesian classifier and 

using it as the last segment in a series of rulesets for a given RHS attribute.  (For 

example, basing the current chord function only on the current melody pitch, and setting 

both the minimum probability for a rule and the minimum rule Priority to zero.)  Since 

the first-order classifier will always have exactly one rule which fires, more information 

will be used to pick the RHS value than if no rules fired at all. 
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CHAPTER 4 

Learning / Data Mining Algorithms 
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 This section discusses two general algorithms for extracting rules from example 

data.  The first algorithm discussed is the hashing algorithm, which builds up a large hash 

table of all possible rules.  This was the algorithm used in previous research on the 

ITRULE algorithm (Smyth and Goodman, 1990). The second algorithm, called 

SpanRULE, is a more efficient algorithm I developed for quickly spanning an example 

set with all possible rules.  The algorithms are described in detail.  This section then 

discusses the performance of these algorithms for various types of datasets. 

1. Data Mining 

 The goal of these algorithms is to quickly search through a database of examples 

and examine every potential rule which could be generated from those examples.  These 

algorithms are not dependent on a specific measure of rule worth; they can be used with 

any measure of rule worth. 

 Each example is a set of attribute-value pairs.  The value for a particular attribute 

for a given example may be unknown.  The algorithms do not require that all examples 

have known values for all attributes.  These algorithms currently work with discrete 

values only; they do not work with continuous-valued attributes unless those attributes 

are first binned into discrete bins (for example, a continuous attribute in the range 0-100 

might be binned into 0-10, 10-20, 20-30, 30-40, etc.). 

1.1. Inputs 

 These algorithms take a number of input parameters. 
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1.1.1 Example List 

 This is usually represented as a two-dimensional array of integers.  Each row is a 

single example.  Each column is an attribute.  The value at location (R,C) in the array is 

therefore the value of attribute C for example R.  For each attribute, we have an array of 

possible string tokens for that attribute.  For example, an attribute "color" might have an 

array {"red", "yellow", "green", "blue"}.  The value stored at (R,C) is an offset into the 

token array for the Cth attribute.  So if that attribute is "color" and the value is 2, the Rth 

example would have the attribute-value pair "color=green" (since arrays are 0-based).  If 

the value for that attribute is unknown for the example, (R,C) would contain the value –1. 

 Using 32-bit integers, each attribute can thus have up to 2 billion different discrete 

values.  This is more than sufficient. 

 Using 16-bit integers would reduce the amount of memory consumed by the 

example list by half.  This might be worthwhile in extremely low memory situations.  

However, since the current generation of 32-bit processors is slightly more efficient at 

reading in 32-bit integers than 16-bit integers, it might also involve a slowdown of a few 

percent when accessing the example list. 

1.1.2 Function for Evaluating a Measure of Rule Worth 

 The algorithms discussed here are independent of the measure of rule worth used.  

This is true so long as the measure of rule worth can be determined independently for 

each rule and is not dependent on other rules.  The measure of rule worth as used by these 

algorithms is a function which takes as input a rule and returns as output a floating point 

number.  The measure is allowed to use other static variables such as the distributions of 
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the attributes for the LHS and RHS of the rule, etc.  For testing these algorithms, the 

measure of rule worth used was the ITRULE J-measure.   

1.1.3 Minimum Measure of Rule Worth 

 The rule generation algorithms can be set to keep only rules with worth above 

some threshold value.  (Worth is determined by the above function.) 

1.1.4 Maximum Rule Order 

 This is the maximum number of terms allowed on the LHS of a rule. 

1.1.5 Minimum Examples On Which A Rule Must Fire Correctly 

 The algorithms can be set to keep only rules which fire correctly on more than 

one example.  This reduces the risk that the generated rules simply memorize the training 

examples.  As an example of this, consider a training set of 1000 examples and a 

generated set of 1000 rules, each firing 100% correctly on only a single example.  This 

ruleset would generalize extremely poorly.   

 The SpanRULE algorithm can take advantage of this parameter to reduce the 

number of rules which must be examined closely. 

1.1.6 Minimum Fraction Correct When Rule Fires 

 The algorithms can be set to keep only rules which are correct more than a 

threshold fraction of the time when they fire.  This is a common measure of rule worth, 

and is often used in conjunction with a more complex measure of rule worth such as the 

J-measure. 
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 The SpanRULE algorithm can take advantage of this parameter to reduce the 

number of rules which must be examined closely. 

1.1.7 Number of Rules To Keep  

 Often, these algorithms will generate millions of potential rules.  Keeping all of 

these rules around would consume large amounts of memory.  However, most of these 

rules would be of extremely low rule worth.  These algorithms sort the entire set of 

potential rules by the measure of rule worth, and keep at most this many rules (in 

descending order of rule worth). 

1.2. Outputs 

 Both algorithms output the set of rules with the highest rule worth.  Depending on 

the number of potential rules, this may be less than or equal to the maximum number of 

rules to keep.  The algorithms also output a number of statistics used to analyze their 

performance.  These outputs are discussed in more detail in the performance analysis 

section below. 

2. Algorithm Descriptions 

These algorithms make use of the terminology in Table 4.1. 
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Table 4.1: Terminology for Rule Generation Algorithms 

MAXORDER Maximum Rule Order (see above). 
MAXRULES Number of Rules To Keep (see above). 
NVRHS The number of different values the RHS attribute can take. 
EXAMPLES The set of training examples.  We filter out any examples with 

unknown values for the RHS attribute at the time the examples 
are loaded, since those examples can't be used for generating 
rules. 

EXAMPLE[n] The nth training example. 
EXAMPLE.RHSVAL The RHS attribute's value for an example. 
MINWORTH Minimum Measure of Rule Worth (see above). 
MINCORRECT Minimum Fraction Correct When Rule Fires (see above). 
MINEXAMPLES Minimum Examples Rule Fires Correctly On (see above). 
RULEWORTH(r) Measure of rule r's worth. 
 
 
 
 

Table 4.2: Terminology for Hashing Algorithm 

HASHSIZE Number of elements in the hash table. 
HASHTABLE(hv) The hash table element at offset hv.  This contains the following 

elements: LHS (RULELHS for this element) and RHSDIST 
(distribution of RHS values for the LHS). 

HASHVALUE(lhs) A hash value derived from the attribute-value pairs in the 
specified rule LHS. 

RULELHS The left-hand side of a rule.  This contains the following 
elements:  ORDER (number of LHS terms), ATTR[] (attribute for 
each term), and VALUE[] (value for each term). 

LHSCOMBOS The set of permutations of 1…MAXORDER LHS attributes.  For 
example, with the LHS attributes {A, B, C}and MAXORDER=3, 
this set would contain {A, B, C, AB, AC, BC, ABC}. 
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2.1. The Hashing Algorithm 

This algorithm makes use of additional terminology from Table 4.2. 

2.1.1 Stage 1: Allocate Memory and Determine Hashing Value Function 

 The hashing algorithm requires a hash table which is large enough to hold all 

possible rule LHS's and the RHS distributions for them.  Determining the size of this 

hash table is the first problem with the hashing algorithm.  If the table is too small, it will 

not be able to hold all of the rule LHS's which are actually generated, and the algorithm 

will halt and need to be restarted.  If the table is too large, additional time will be wasted 

in stage 3 scanning the table for potential rules.  If the table does not fit in available 

physical memory, excessive amounts of time will be spent managing virtual memory for 

the table; this can slow the algorithm by a factor of 100 or more.  Section 3.1 below 

analyzes the effect of hash table size on the time and memory required for the hashing 

algorithm. 

 The hashing value function is an important part of the hashing algorithm.  This 

takes a potential rule LHS and generates a number in the range 0…HASHSIZE-1.  The 

choice of function here can make a non-trivial difference in how evenly the hash table is 

filled.  A poor choice leads to uneven filling, which increases the number of hash entries 

that need to be examined when trying to add an example's contribution to the hash table.  

This increases the runtime, sometimes dramatically.  This can be seen in the results as 

'bumps' in the runtime graphs for the hashing method where the value function was not a 

good match for the example data.  Unfortunately, again it is not possible before running 

the algorithm to determine whether a particular hashing value function is a good match 
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for the given example data or not.  The hashing value used for these tests is generated by 

the pseudocode in Figure 4.1; this seemed to fill the hash table fairly evenly for the 

examples tested. 
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VALUE = LHS.ORDER 
 
Loop A from 0…LHS.ORDER-1 

 
VALUE = (1234567 * VALUE) + LHS.ATTR[A] 
 
VALUE = (7654321 * VALUE) + LHS.VALUE[A] 

 
VALUE = (VALUE * 112344567) mod HASHSIZE 

Figure 4.1: Hashing Value Algorithm 
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2.1.2 Stage 2: Fill the Hash Table 

 The advantage of the hashing algorithm is that it only needs to look at each 

example once.  Once the hashing algorithm is done with that example, it never refers 

back to it again.  This means that the examples do not need to be held in memory while 

the algorithm is running.  This makes the hashing algorithm well-suited to problems 

which have tens or hundreds of millions of examples, so long as those problems don't 

generate so many potential rules that the hash table size is prohibitive. 

 For each example, examine all the rule LHS's which can be formed by the 

LHSCOMBO attributes and their corresponding values in the example.  Skip any LHS's 

where the corresponding values in the example are unknown. 

 For each potential LHS, generate the corresponding HASHVALUE(lhs).  Look in 

the that hash table element to see if it is (1) unused or (2) matches our current LHS.  If 

the element is used but not by our LHS, skip to the next element and try again.  Continue 

this process, wrapping from the end of the hash table to the beginning, until either (1) or 

(2) or we arrive back at our original element (in which case the hash table must be full – 

panic and stop calculating). 

 If the table element is unused, copy in the potential LHS.  The element is now 

used, but has an empty distribution. 

 In either case, now increment the RHS distribution for that table element for the 

RHS attribute's value in the current example. 

 This stage can be represented by the pseudocode in Figure 4.2. 



 45 

 

For EX in EXAMPLES 
 
For CO in LHSCOMBOS 

 
If EX contains unknown values for an attribute in CO, 
next EX 
 
ELHS = LHS with attributes from CO and values from EX 
 
HV = HASHVALUE(ELHS) 
 
Search HASHTABLE starting at HASHTABLE[HV] 
 

If HASHTABLE[HV] is unused, copy ELHS into 
HASHTABLE[HV].LHS and stop searching 
 
If HASHTABLE[HV].LHS = ELHS, stop searching 
 
Otherwise, update HV = (HV + 1) mod HASHSIZE 
 
If HV = HASHVALUE(ELHS), panic (hash table is 
full) 
 

Increment HASHTABLE[HV].RHSDIST[EX.RHSVAL] 

Figure 4.2: Algorithm to Fill Hash Table 
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2.1.1 Stage 3: Empty the Hash Table 

 Once all the examples have been processed, the hash table contains the RHS 

distributions for all potential rule LHS's which can be generated from the example data.  

The next step is to empty the hash table and generate rules from those distributions. 

 For each hash table element in use, generate a potential rule per nonzero entry in 

the RHS distribution for that element.  (For example, if the RHS distribution for an 

element has 3 nonzero bins, generate 3 potential rules.) 

 Evaluate each potential rule and make sure it meets the tests for 

MINEXAMPLES, MINCORRECT, MINWORTH.  If it meets all the tests, add it to the 

output list of rules.  If the output list of rules already contains MAXRULES rules, remove 

the lowest worth rule and replace it with the new rule if the new rule is of higher worth. 

 This stage can be represented by the pseudocode in Figure 4.3. 
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For TE in HASHTABLE 
 

If TE is unused entry, next TE 
 
For R = 0…NVRHS-1 
 

If TE.RHSDIST[R] = 0, next R 
 
Consider potential rule PR of the form "if TE.LHS 
then RHS=R" 
 
If TE.RHSDIST[R] < MINEXAMPLES, next R 
 
If TE.RHSDIST[R] is not at least MINCORRECT fraction 
of total counts in TE.RHSDIST, next R 
 
If RULEWORTH(PR) < MINWORTH, next R 
 
If output list of rules contains less than MAXRULES 
rules, add PR to list and next R 
 
Find rule RLW with lowest worth LW in output list.  
If RULEWORTH(PR) < LW, next R 
 
Remove rule RLW from the output list and replace it 
with rule PR 

Figure 4.3: Algorithm to Empty Hash Table 

 
 
 

Table 4.3: Terminology for SpanRULE Algorithm 

HASHARRAY Array of sortable elements.  Each element contains the following 
parts: VALUE (hash value) and INDEX (index of the example this 
element refers back to). 

CNVLHS[att] Number of values attribute att in the current attribute combination can 
take. 

CEXVAL[att] Value for the current example for attribute att in the current attribute 
combination. 

AMINWORTH Adaptive minimum rule worth required to save a rule (starts out at 
MINWORTH). 

RHSDIST[] Distribution of RHS values for the current LHS. 
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2.2. The SpanRULE Algorithm 

 The discussion of the SpanRULE algorithm makes use of additional terminology 

from Table 4.3. 

2.2.1 Stage 1: Determine Hash Value Precision 

 The SpanRULE algorithm works by creating a hash value for each example from 

the values in that example corresponding to the current attribute combination.  This is 

generated by the pseudocode in Figure 4.4. 

 Obviously, VALUE must have sufficient precision to hold the product of the 

CNVLHS[]'s for the worst-case combination of attributes.  The algorithm verifies this 

using the process in Figure 4.5.  For all of the examples run so far, BITSREQURED ≤ 

32.  This has allowed the hash values to be stored in normal 32-bit unsigned integers.  For 

high-order rules where the attributes can have many values, it might be necessary to use 

64-bit numbers.  This would obviously impact sorting performance somewhat on the 

current generation of personal computers, because it would take longer to generate and 

compare the values, and because larger numbers would require more memory for the 

HASHARRAY. 
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VALUE = 0 
 
For A = 0…CURRENTORDER – 1 

 
If CEXVAL[A] = -1 then fail (example contains unknown value 
for an attribute we're using) 
 
If A>0 then VALUE = (VALUE * CNVLHS[A-1]) 
 
VALUE = VALUE + CEXVAL[A] 

Figure 4.4: Pseudocode for SpanRULE Hash Value Function 

 
 
 
 

MAXVALUE = 0 
 
For CO in LHSCOMBOS 

 
MAXCO = 1 
 
For A = 0…CO.ORDER-1 

 
MAXCO = MAXCO * CNVLHS[A] 
 

If MAXVALUE < MAXCO then MAXVALUE = MAXCO 
 

BITSREQUIRED = LOG2(MAXVALUE) 

Figure 4.5: Process for Determining Hash Value Precision 
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2.2.2 Stage 2: Allocate Memory 

 The SpanRULE algorithm requires memory proportional to the number of 

examples.  The entire example list needs to be held in memory, since it is referenced 

multiple times.  SpanRULE also requires an array of sortable elements, one per example. 

 Because the memory requirements of SpanRULE are known at the start of the 

algorithm, if enough memory is available it is guaranteed that the algorithm will 

complete.  This is an obvious advantage of SpanRULE over hashing, since hashing 

cannot determine beforehand how much memory will be required for the algorithm to 

complete. 

2.2.3 Stage 3: Generate Rules From Attribute Combinations 

 In hashing, the outermost loop of the algorithm is over the examples.  In 

SpanRULE, the outermost loop is over the attribute combinations LHSCOMBOS. 

 Within each combo, the algorithm scans down the list of examples and calculates 

the hash value for each example.  If the example does not contain any unknown values 

for the current attribute combination, the hash value and the index for the current 

example are added to the HASHARRAY.  This has performance advantages if the 

examples contain a high fraction of unknown values, since those examples are weeded 

out early in the processing of each combination. 

 The algorithm then sorts the HASHARRAY by HASHARRAY.VALUE.  

SpanRULE currently uses the quicksort algorithm, which has appealing performance, but 

this could easily be replaced by any other sorting algorithm.  Because there is a 1:1 
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mapping of hash values to LHS values for each attribute combination, sorting has the 

effect of placing all elements with the same hash values adjacent to each other. 

 SpanRULE then traverses along the hash array, considering each group of 

elements which share a common hash value / LHS.  It accumulates the distribution of the 

RHS values for the corresponding examples to the elements (remember that 

HASHARRAY[i].INDEX is the index of the example from which element 

HASHARRAY[i] was derived). 

 For each LHS, SpanRULE examines the RHS distribution in order of decreasing 

count.  If the count drops below MINEXAMPLES, or the count divided by the total count 

in the distribution drops below MINCOUNT, processing proceeds to the next LHS / hash 

value, since the rest of the distribution will also be below MINEXAMPLES or 

MINCOUNT.  This reduces the number of potential rules which need further 

consideration. 

 For each potential rule (LHS-RHS combo), SpanRULE then calculates the rule 

worth.  If the worth is below AMINWORTH, the rule is too low worth to keep (its worth 

is either less than MINWORTH, or it is less than the worth of the MAXRULES rules 

already in the output list so it wouldn't be kept anyway), so processing moves to the next 

potential rule.  Otherwise, the rule is added to the output list of rules.  If the output list 

already contains MAXRULES rules, search for the rule with lowest worth.  If that worth 

is less than the new rule's, remove that rule from the output list and replace it with the 

new rule.  Update AMINWORTH to the worth of the removed rule, since that is ≤ the 

worth of all other rules in the output list. 

 This stage can be represented by the code in Figure 4.6. 
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AMINWORTH = MINWORTH 
 
For CO in LHSCOMBOS 

 
// (here we're filling the hash array) 
For EX in EXAMPLES 
 

If EX contains unknown values for an attribute in CO, 
next EX 
 
HASHARRAY[EX].INDEX = EX 
HASHARRAY[EX].VALUE = SHASHVALUE(CO,EX) 
 

// (here we're sorting the hash array) 
Quicksort HASHARRAY by HASHARRAY.INDEX 
 
// (here we're searching the sorted array for rules) 
For HDIST in subsets of HASHARRAY with same index 
 

ELHS = LHS with attributes from CO and values from EX 
 
For HE in HDIST 

 
Increment RHSDIST[HE.INDEX.RHSVAL] 

 
For R in RHSDIST, in order of decreasing RHSDIST[R] 
 

If RHSDIST[R] < MINEXAMPLES, skip to next HDIST 
(not just next R) 
 
If RHSDIST[R] is not at least MINCORRECT 
fraction of total counts in RHSDIST, skip to 
next HDIST 
 
Consider potential rule PR of the form "if ELHS 
then RHS=R" 
 
If RULEWORTH(PR) < AMINWORTH, next R 
 
If output list of rules contains less than 
MAXRULES rules, add PR to list and next R 
 
Find rule RLW with lowest worth LW in output 
list.  If RULEWORTH(PR) < LW, next R 
 
Remove rule RLW from the output list and 
replace it with rule PR 
 
AMINWORTH = LW 

Figure 4.6: Algorithm for Generating Rules From Attribute Combinations 
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3. Performance Analysis 

 This section examines the performance of the hashing and SpanRULE methods 

on a number of different data sets.  Performance for an individual run is measured in two 

ways: amount of memory required by the algorithm, and time required for the algorithm 

to complete (including whether the algorithm completed at all) 

 Benchmarks were run on a dual Pentium II 266MHz system with 192MB RAM 

and 10000RPM ultra-wide SCSI hard drive, running Windows NT 4.0.  The algorithms 

were limited to one of the processors; the operating system and benchmarking routines 

ran on the second processor, to minimize interference with the algorithm.  The algorithms 

were allowed to consume up to 160MB RAM.  More memory was available as virtual 

memory (paged off of a swapfile on the hard drive), but the performance of algorithms 

relying on virtual memory was several orders of magnitude slower (enough so that the 

test runs were stopped after 8 hours, and had still not completed by then). 

 Unless otherwise noted, all runs used the following settings: 

• MINEXAMPLES = 2 

• MINCORRECT = 0.5 

• RULEWORTH() = ITRULE J-measure 

• MINWORTH = 0.001 

• MAXRULES = 2000 

3.1. Performance vs. Hash Table Fullness 

 The hashing algorithm requires a large hash table to hold the RHS distributions 

for all the possible rule LHS's.  If this table is too small, it will fill up completely and the 
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algorithm will halt.  If the table is only barely big enough, the algorithm will be required 

to spend more time searching for LHS's and open slots in the table.  The bigger the table 

gets, the more likely that the hash values for the LHS's will be unique, and the less time 

will be spent searching for LHS's and open slots in the table.  However, when the hash 

table is initialized in step 1 or emptied in stage 3, a larger hash table takes longer to 

empty. 

 Ideally, the hashing algorithm would pick a table size which is large enough to 

hold all the LHS's without being too crowded, and without being so large that it spends 

extra time initializing and emptying the hash table.  Unfortunately, there is no way to 

predict ahead of time the number of LHS's which will be generated from an example set. 

 For three different example sets, the SpanRULE algorithm was used first, to 

determine the number of LHS's generated from the example sets.  With this information, 

it was possible to run the hashing algorithm with a series of table sizes which would 

result in the filled table being between 10% - 99% full. 

 The first two example sets were Bach harmony data from (Spangler, Goodman 

and Hawkins, 1998).  The third example set was a chess endgame dataset (Bain, 1992).  

These sets are shown in Table 4.4. 
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Table 4.4: Example Sets Used For Benchmarking 

Example set 1: Bach harmony, denoted as 1.20   
• 5783 examples 
• MAXORDER = 5 
• LHS = "Melody0", "Melody1", "Melody2", "Function1", "Function2", "Accent0", 

"Accent1", "Bass1", "Tenor1", "Alto1", "Soprano1" 
• RHS = "Function0" 
 
 
Example set 2: Bach harmony, denoted as 1.21 
• 6847 examples 
• MAXORDER = 5 
• LHS = "Melody0", "Melody1", "Melody2", "Function1", "Function2", "Accent0", 

"Accent1", "Bass1", "Tenor1", "Alto1", "Soprano1", "Function0" 
• RHS = "Bass0" 
 
 
Example set 3: Chess endgame, denoted as 1.22 
• 28055 examples 
• MAXORDER = 5 
• LHS = "WKingCol", "WKingRow", "WRookCol", "WRookRow", "BKingCol", 

"BKingRow" 
• RHS = "MovesToWin" 
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 Subsets of each example set were also run, to test whether the shape of the 

performance curve for the hashing algorithm vs. hash table size varied based on the size 

of the run.  These subsets were 30, 100, 300, 1000, 3000, 10000 examples (obviously, the 

10000-example run was only applicable for the third example set). 

 Each example set and subset was run with hash table fill between 10% - 99% 

(based on the required hash table size as determined by the number of LHS's reported by 

SpanRULE).  For each subset, the runtimes for the hash table sizes were scaled to the 

best runtime within the hash table sizes for that subset.  This made it possible to compare 

the curve shapes between sets.  Figure 4.7 shows this data. 
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Figure 4.7: Runtime vs. Hash Table Fullness for Hashing Algorithm 
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 When the table is too full, the runtime increases because the algorithm is spending 

more time searching for LHS's in the hash table.  On average, a 99% full table results in 

search lengths an order of magnitude greater than a 75% full table.  Using an even larger 

table such as a 10% full table can cut the average search length by another factor of 2, but 

requires 7.5x the memory. 

 When the table is too empty, it consumes large amounts of memory.  On the first 

two example sets, a 10% full hash table for the entire example set wouldn't fit into the 

160MB available physical RAM.  With the full second example set, tables below 75% 

full wouldn't fit into memory.  A larger example set with more LHS's might not be able to 

be processed by the hashing method in 160MB at all.  Even when the table does fit into 

memory, the time required to empty it limits the speed of the algorithm for large tables.  

This effect is more pronounced when there are fewer examples in the input set. 

 The optimal hash table size falls where the table ends up 75% full.  This has the 

best tradeoff of memory consumed vs. search time, and thus the best overall runtime.  

Since the runtime grows more slowly towards emptier tables than it does towards fuller 

tables, it is best to err on the side of too large a table than too small a table.  That also 

avoids the problem of too small a table filling up completely. 

 In Figure 4.7, some of the curves have spikes in them.  These spikes are caused by 

uneven hash table filling.  This is another weakness of the hashing method.  If the 

hashing function does not evenly spread values across the table, part of the table may fill 

up and cause longer average search lengths for that run.  This does not prevent the 

algorithm from finishing, but may degrade performance on some runs. 
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3.2. 7-Segment LCD Data – Using Random Example Data 

 In order to generate performance statistics for the rule generation algorithms, it 

was necessary to obtain a number of extremely large datasets with varying properties.  

However, large datasets of sufficient complexity are difficult and expensive to obtain.  

One way around this is to use datasets generated algorithmically from some model.  A 

program encoding this model can be used to generate datasets of any size relatively 

easily. 

 One model which has been used previously is the 7-segment LCD problem.  This 

has seven inputs on the LHS, representing the seven LCD segments.  On the right-hand 

side is the digit represented by the segments.  To make the problem non-trivial, the 

examples are corrupted by 10% random noise (a 10% chance that any given segment is 

flipped from off to on or vice versa).  This dataset was used by Goodman, et al. (1992) in 

their work on developing the ITRULE algorithm for classification. 

 Example sets from between 50 – 1,000,000 examples were generated using that 

algorithm, and run through both rule generation algorithms.   

 We then decided to see whether the performance of the algorithms would differ if 

run on example sets completely corrupted by noise.  Our hypothesis was that the 

performance should not change significantly.  Both the real and random datasets were big 

enough to generate all possible rule LHS's (only 1610 LHS's are possible if rules are 

limited to five or fewer LHS attributes), so the size of the hash tables would be equal.  

This means memory usage would be equivalent between the real and random data.  While 

the time spent in SpanRULE in emptying the RHS distribution for each LHS would be 
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slightly more efficient for the random data, due to the MINEXAMPLES and 

MINCORRECT cutoffs, that represents only a small fraction of the total runtime.   

The data from these the runs is shown in Figure 4.8. 



 61 

 

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

10 100 1000 10000 100000 1000000
Examples

Ti
m

e 
pe

r e
xa

m
pl

e 
(m

s)

Real SpanRULE total time

Real SpanRULE qsort() time

Real Hashing total time

Random SpanRULE total time

Random SpanRULE qsort() time

Random Hashing total time

 

Figure 4.8: Comparison of Runtimes From Real and Random LCD Data 
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 For SpanRULE, the runs on random data varied from 90% - 112% of the runtimes 

for real data.  Runs with few examples were the only ones where the algorithm was faster 

on random data.  Virtually all of this time increase seems to be spent in the quicksort.  

Since the LHS's for random data have an even distribution, they represent one of the 

worst cases for the quicksort algorithm.  This is reflected in quicksort times 113% - 119% 

of the quicksort times for real data. 

 For hashing, the runs on random data varies from 100% - 114% of the runtimes 

for real data.  Virtually all of this time increase seems to be spent in filling the hash table.  

The cause appears to be that the hashing algorithm had a longer average search length to 

find a matching entry or empty hash entry.  For real data, the average hash search length 

was 1.49; for the random data, the average hash search length was 1.83.  Again, the 

difference in the LHS distributions between real and random data was likely the cause.  

For real data, the more likely LHS's would also be more likely to be found in the hash 

table after a shorter search; this would reduce the average search length.  For random 

data, the LHS's would be evenly distributed and so there would be no LHS's which would 

benefit more than the others from having a shorter-than-average search length. 

 Aside from those differences, neither algorithm showed a significant behavior 

change between real and random data.  Thus, it seems plausible to further examine the 

behaviors of the algorithms by generating a series of different random example sets with 

different parameters.  This allowed isolating a number of different factors which affected 

the performance of the algorithms.  These factors are examined in the following sections. 
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3.3. Performance vs. Number of Examples 

 To examine the performance of the algorithms vs. number of examples, several 

test example sets were generated.  These had 7 LHS attributes, with between 2 – 11 

values per attribute, and a RHS attribute with 10 values.  Example sets were generated 

with between 50 – 1,000,000 examples.  The varying number of values per LHS attribute 

simulates example sets of varying complexity. 

 For runtime, both algorithms had a strong linear dependence on the number of 

examples.  To view the underlying trends, runtime is graphed as runtime per example. 

 Since the quicksort upon which the SpanRULE algorithm depends scales as 

N*log(N), we would expect to see SpanRULE's runtime have some log(N) dependence.  

The hashing algorithm should scale more linearly, as long as memory for the hashing 

table is available. 
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Figure 4.9: Runtime vs. Number of Examples 
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Figure 4.9 shows the results of these runs.  For all the example sets, SpanRULE is more 

efficient for small numbers of examples.  The more complex the set, the larger the 

number of examples before hashing is faster than SpanRULE.  At the most complex set 

(11 values per LHS attribute), the hashing algorithm fails to complete when run on 

example sets containing over 50,000 examples – the possible rules LHS's for those runs 

did not fit in a 160MB hash table.  For this set, SpanRULE is always more efficient. 

 As the number of examples gets larger, the hashing algorithm gets more efficient 

(when it is able to complete).  However, it is never even twice the speed of the 

SpanRULE algorithm.  The SpanRULE algorithm gets gradually more inefficient as the 

number of examples increases, but this is an extremely gradual inefficiency (less than a 

factor of two as number of examples grows from 50 to 1,000,000). 

 As expected, the memory required for the SpanRULE algorithm grows linearly in 

the number of examples. 

3.4. Performance vs. Number of Potential Rule LHS's 

 More complex data sets should impact hashing more than SpanRULE, since the 

former needs to maintain a larger hash table to keep track of all of the potential rule 

LHS's.  This was tested using the example sets from the previous section.  While holding 

the number of examples constant, the number of values per LHS attribute was varied 

from 2 – 11.  The runtime for each run was graphed against the number of rule LHS's 

considered for that run.  Figure 4.10 shows this data. 
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Figure 4.10: Runtime vs. Number of Rule LHS's 
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 For the three smallest series, SpanRULE is always slightly faster.  As the number 

of potential rules increases, hashing runtime also increases faster than SpanRULE 

runtime.  For the larger two series (100,000 and 1,000,000 examples), SpanRULE is 

slightly slower.  However, hashing was unable to complete the more complex runs in 

those series, while SpanRULE was able to complete them without seriously decreased 

performance. 

 As expected, the memory required for the hashing algorithm grows linearly in the 

number of potential rule LHS's. 

3.5. Performance vs. Number of RHS Values 

 To examine the performance of the algorithms vs. the number of values the RHS 

attribute could take, several additional example sets were generated.  These had between 

50 – 1,000,000 examples, and either 2, 5, 8, or 11 values per LHS attribute.  Sets were 

generated with 2, 10, 100, and 1000 values for the RHS. 

 Since the hashing algorithm needs to hold all RHS distributions for all the 

potential rule LHS's, its memory usage scales linearly with the number of RHS values.  

SpanRULE should not be as severely impacted by the number of RHS values, since it 

only needs to examine the distribution for one LHS at a time. 

 The maximum available space for the hashing method's hash table was 160MB.  

With 2 values per RHS, this allowed 2,000,000 potential rule LHS's to fit into the table – 

enough for all but the largest and most complex 2-RHS runs.  However, with 1000 values 

per RHS, only 40,000 LHS's fit into the table.  That only allowed a small fraction of the 
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1000-RHS runs to complete using the hashing method.  The SpanRULE method was able 

to complete all of the runs. 

 As the number of RHS values increased, the runtimes slowed somewhat for both 

algorithms.  This was due to additional time required to search the RHS distribution for 

each LHS for nonzero elements. 

3.6. Performance vs. Number of LHS Attribute Combinations 

 Both algorithms need to examine every LHS attribute combination for every 

example.  However, the SpanRULE algorithm also has the overhead of (# of combos) 

quicksorts, traded off against the hashing algorithm's overhead of needing to loop through 

the combinations once per example. 

 Since runtime is strongly dependent on the number of possible rules, several 

example sets were generated with different numbers of LHS attributes and values per 

attribute according to the following formulas: 

(# LHS attributes) + log2(values per LHS attribute) = 12 
 

(# LHS attributes) + log3(values per LHS attribute) = 12 
 

 Using these formulas, example sets were generated with 2, 3, 4, or 6 LHS 

attributes (and thus 64, 16, 8 or 4 values per LHS attribute for the top formula and 729, 

81, 27, or 9 values per LHS attribute for the bottom formula).  By using these formulas, 

and setting the max rule order to 6, the number of potential rule LHS's for a set of 

examples spanning the input space should be constant for each formula.  Example sets 

had between 50 – 1,000,000 examples. 
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 For both algorithms, runtime scales with the number of LHS attribute 

combinations.  However, the ratios of the runtimes for the hashing and SpanRULE 

algorithms does not show that one is significantly more efficient than the other as the 

number of LHS attribute combinations increases. 

3.7. Performance vs. Fraction of Unknown LHS Values 

 Some real-world data sets, especially medical databases, are somewhat sparse, 

containing a large fraction of unknown values.  For these data sets, large numbers of 

examples may be required to get accurate statistics from which to generate rules, since an 

example cannot contribute to a rule unless all of the LHS attributes for that rule have 

known values in the example. 

 The example sets used in this section had 7 LHS attributes, with between 2 – 11 

values per attribute, and a RHS attribute with 10 values.  Example sets were generated 

with between 50 – 1,000,000 examples.  The examples were then corrupted with 10%, 

20%, 40%, and 80% unknown values.   

 The hashing method examines each attribute combination for an example at the 

last stage before adding that example's contribution to the hash table.  Gains in speed for 

the hashing method should be due to needing to update the hash table fewer times. 

 The SpanRULE method examines the attribute combination for each example 

when calculating the hash value for that example and combination.  This happens before 

the hash values are quicksorted.  If the example set has a large number of unknown 

values, this reduces the number of examples which must be quicksorted and processed 

further.   
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 Relative runtimes for the two algorithms for 10% - 40% unknowns were roughly 

comparable to runtimes without unknown values.  For the 80% unknowns runs, 

SpanRULE gained a 40% speed increase over hashing.  This is likely because for 

unknown examples it could skip over more processing than the hashing method could. 

3.8. Memory Usage 

 As expected, the memory required for the SpanRULE algorithm grows linearly in 

the number of examples.  The most memory required was 38.2MB, for the 1,000,000 

example run with 1000 RHS values. 

 SpanRULE should be able to use virtual memory (disk space) to hold the example 

list, since it only needs to read down the example list (# LHS combos) times to calculate 

the hash values.  Sorting of the examples is done using the calculated hash values, which 

require much less memory and so can be held in real memory.  Since the example list is 

read in order, there will not be excessive page swapping as the example list is cycled into 

memory. 

 As expected, the memory required for the hashing algorithm grows linearly in the 

number of potential rule LHS's and linearly with the number of RHS values.  The most 

memory required would have been 20378MB for the 1,000,000 example run with 1000 

RHS values.  However, that was far more than the 160MB available for running the rule 

generation benchmark. 

 Hashing is not able to use virtual memory (disk space).  If the hashing algorithm 

is good, it will evenly fill the hash table.  However, this means that each hash table access 

is essentially at a random location in the table.  Random access is the worst possible case 
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for virtual memory usage, since there is no way to gain advantage by holding frequently 

accessed pages of memory in real memory (since all pages are accessed randomly and 

evenly). 

4. Conclusions 

4.1. Hashing Algorithm 

 The hashing method requires a good hashing function.  Nonetheless, in a non-

trivial fraction of the runs, even a relatively good hashing function fills the hash table, 

greatly impacting runtimes.  If the hashing function fills the table unevenly, performance 

can be far worse even for small datasets and large hash tables. 

 The hashing algorithm performs optimally when the hash table is sized so that 

after adding all the potential LHS's the hash table is 75% full.  If the hash table is barely 

big enough (almost 100% full), runtime is greatly affected by the time spent searching for 

hash table entries when filling the table.  If the hash table is too small (over 100% full), 

the algorithm will completely fill the hash table and halt.  If the hash table is too large 

(less than 25% full), the overhead required to empty the hash table slows the algorithm 

considerably.  Unfortunately, there does not seem to be a good way to determine ahead of 

time what size hash table will be required. 

 The memory required by hashing scales linearly with the number of potential 

rules and with the number of RHS attributes.  If there are a large number of potential 

rules, or if the RHS has many possible values, the hashing algorithm's performance 

suffers because of increased memory consumption for the hash table.  Hashing does not 
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require any memory per example.  Thus, the hashing algorithm is most efficient for large 

example sets which generate a relatively small number of rules. 

4.2. SpanRULE Algorithm 

 The SpanRULE algorithm performed well in all scenarios.  Its runtime was not 

severely impacted by varying any of the parameters.  Although its performance did not 

scale as well as hashing for large number of examples, the decrease in performance for 

large example sets was not major (less than a factor of two over five orders of magnitude 

of example set size). 

 The memory required by SpanRULE scales with the number of examples, since it 

requires holding the entire training set in memory at once.  This might present a problem 

for running SpanRULE on extremely large datasets (tens of millions of examples).  

Partially, compensating for this limitation, the memory required by SpanRULE is known 

before the algorithm is run – allowing the user to know ahead of time whether there is 

sufficient memory for the algorithm to complete.  Furthermore, SpanRULE requires 

virtually no additional memory as the number of RHS values increases.   

4.3. Comparison 

 For small datasets, the performance of the two algorithms is roughly comparable. 

 For large datasets of low complexity (many examples, few potential rules), 

hashing is up to twice as fast as SpanRULE, since its runtime per example is unaffected 

by the number of examples. 

 For datasets of high complexity (many potential rules or many RHS values), 

hashing is often unable to finish at all, because its memory consumption scales with both 
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those quantities.  For example sets with hundreds or thousands of RHS values, hashing is 

unable to run except with the simplest datasets.  The SpanRULE algorithm was always 

able to finish, regardless of the complexity of the dataset. 

 Some data sets have a high fraction of values which are unknown.  SpanRULE 

gains a performance benefit for those data sets, since for a given combination of LHS 

attributes it only needs to hash/quicksort the examples which have no unknown values for 

those attributes.  Hashing also gains some benefit (since there are fewer combinations of 

attributes for each example for which all the values are known), but not as significant a 

benefit as SpanRULE. 

4.4. Hybrid Algorithms 

 It seems natural to examine whether there might exist a hybrid algorithm 

somewhere between pure hashing and pure SpanRULE.  Such an algorithm would 

combine the advantages of both existing algorithms.  When both existing algorithms are 

able to finish, their runtimes are roughly comparable; the only times where an algorithm 

is unable to finish is when it runs out of memory.  For a hybrid algorithm to offer any 

advantage, it will thus need consume less memory. 

 The advantage of hashing is that it only needs to look at each example once, so it 

can be used on very large example sets.  The downside is that it needs enough memory to 

hold all possible rule LHS's and their respective RHS's in its hash table.   

 The advantage of SpanRULE is that it examines one potential rule LHS at a time, 

so it does not require large amounts of memory to hold many LHS and RHS distributions.  



 74 

The downside is that it needs enough memory to hold all the examples, since it must 

examine and sort the example list once per LHS attribute combination. 

 Assume that the example list fits in memory.  Why not empty the hash table more 

frequently, so that it doesn't need to be as big? 

 One possible hybrid algorithm might through the examples once per rule order 

and empty the hash table after each rule order.  The problem here is that most of the 

potential rules (on the order of 80%-90%) are of the highest rule order allowed.  

Emptying the hash table saves only 10-20% on memory, but requires (rule order) passes 

through the example list to fill the hash table and (rule order) passes through the hash 

table to empty it.  This does not significantly reduce memory usage, and it removes the 

one real advantage the hashing method has (only looking at each example once). 

 Another hybrid could sift through the examples (# LHS combos) times in a 

manner similar to the outer loop of SpanRULE.  Instead of qsort()'ing the potential rules, 

it could put them in a hash table.  The problem here is that the number of rules for a given 

combination isn't known, and potentially could be large.  To ensure the hash table doesn't 

overflow, we need to use a large hash table.  But this introduces the overhead of 

emptying a large hash table (# LHS combos) times – which is very slow. 

4.5. Summary 

 The SpanRULE method is a robust method for generating potential rules.  It 

performs comparably fast to the hashing method, but does not have the hashing method's 

weakness of using an unpredictably large amount of memory.  Hybrid algorithms 

utilizing features of both SpanRULE and hashing do not appear promising. 
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CHAPTER 5 

Refining Raw Rules 
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 The algorithms described above generate all possible rules that can be derived 

from the example data.  Further processing is necessary to narrow that set of rules down 

to a sufficiently small set of the most valuable rules. 

1. Subsumption Pruning 

 Subsumption pruning is an algorithm to remove those rules which contribute no 

new information to the ruleset.  Subsumption pruning works in the following manner.   

• Consider two rules A and B which predict the same right-hand side attribute and 

value.   

• If rule B is of higher order than rule A (B has more attributes on its LHS), 

• and if each attribute on the LHS of rule A is present on the LHS of rule B and has the 

same value as it does for rule A, 

• and if rule B is correct a an equal or smaller fraction of the time than rule A, 

• then rule B is removed from the ruleset. 

 The justification for subsumption pruning is as follows.  Any time rule B fires, 

rule A will also fire.  Both rules predict the same RHS value.  Since rule B is not correct 

more of the time than rule A, rule B adds no new information.  Therefore, we might as 

well remove it, and save the memory and CPU time. 

 Subsumption pruning must be done after any filtering and segmentation (see 

Section 5 below).  If rule A in the previous example were filtered out, then we shouldn’t 

have removed rule B and we have lost information. 
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2. Measures for Rule Weight 

When two or more rules fire with conflicting results, some means needs to be available 

for determining which of the conflicting outcomes will prevail.  For each rule, a weight is 

calculated using one of the following measures.  This allows higher-weight rules to 

dominate lower-weight rules for a given situation. 

2.1. Percent Correct 

 One of the simplest measures which can be used is to give greater weight to rules 

which are correct a greater fraction of the time.  This weight is simply 

Wcorrect = p(x|y) 

 This weight works well if there are only a few rules firing for each LHS.  

However, it works very poorly if many rules fire.  It is readily apparent that using this 

weight, two rules which are each correct 41% of the time outweigh a rule which is correct 

80% of the time. 

2.2. Classification Weights 

 (Goodman et al., 1992) derived the following rule weight for classification: 

( )
( ) 





=

xp
yxpW |log  

 This has been shown to be a good weight for classification. 

2.3. Error-cost Weight 

 The previous rule weights are based on the assumption that all incorrect 

classifications are equally bad.  However, as the psychophysics data below shows, this is 
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not the case.  It is thus desirable to derive a weight which is based on the cost of making 

each mistake. 

 We define the cost of guessing x1 when the answer should be x2 as C(x2→x1) – 

the cost of misclassifying an x2 as a x1.  We further require that the cost for a 

misclassified result is always positive.  We define C(x1→x1) = 0; there is no cost for 

guessing the right answer.  The misclassification cost table of C(x2→x1) for all x1,x2 is 

specified as input to this algorithm. 

 We define the average cost for guessing x1 as C(x1).  This is  

∑ →
x

x1)p(x)C(x  

 Similarly, the average cost for guessing x1 given we know y is C(x1|y).  This is 

∑ →
x

x1)y)C(x|p(x  

 Given a rule of the form "IF y THEN x", the simplest cost-based rule weight 

would be one of the form 

Cmax – C(x|y) 

 

Where Cmax is the highest cost in the misclassification table specified as input.  This 

ensures that the weights are always positive.  This first simple weight is roughly 

analogous to the percent correct weight above. 

 We can also define a rule weight as  

C(x) - C(x|y) 

This is the average reduction in cost given that the rule has fired.   

 Since cost is always positive, we could also define the weight as 
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The (1+) parts would help keep the weights from exploding if C(x|y) is very close to 

zero.  The optimal form for this rule weight is dependent on the range of values present in 

the misclassification cost table, though the latter weight will be well-formed for any 

positive-valued misclassification cost function. 

3. Measures for Rule Priority 

 The algorithms for rule generation discussed above generate many more rules 

than are practical to hold in memory or quickly analyze.  It is thus important to order the 

rules by some measure of rule worth.  This allows keeping some fraction of the rules 

which have the highest worth. 

3.1. J-measure 

 The first measure of rule worth used was the J-measure from the ITRULE 

algorithm. (Goodman et al., 1992) All possible rules are considered and ranked by a 

measure of the information contained in each rule defined as 
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 This measure trades off the amount of information a rule contains against the 

probability of being able to use the rule.  Rules are less valuable if they contains little 
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information.  Thus, the J-measure is low when p(x|y) is not much higher than p(x).  Rules 

are also less valuable if they fire only rarely (p(y) is small), since those rules are unlikely 

to be useful in generalizing to new data.  A plot of the J-measure is shown in Figure 5.1. 
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J-Measure vs. p(x|y), p(y)=0.5
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Figure 5.1: J-Measure vs. p(x|y) 
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3.2. Error-cost Measure 

 Given a misclassification cost table of the sort described in Section 2.3 above, it is 

possible to derive a measure of the average misclassification cost CR of a rule: 

( ) ( ) ( )∑ →⋅==
2

2|2
x

R xxCyxpyX|YC  

 Note that if the misclassification cost is the trivial cost where C(x2→x)=1 for all 

x2≠x that the rule cost simplifies to: 

CR = 1 – p(x|y) 

which is just the probability that the rule is incorrect.  As with the J-measure above, it is 

desirable for the priority to take into account the frequency with which the rules fires.  

We propose the following error-cost rule priority: 

( ) [ ])|( yxCCypP RMAXEC −⋅=  

4. Independence Pruning 

 For the classification weight to work properly, all rules which are allowed to fire 

must be independent of one another.  Otherwise, one good rule could be overwhelmed by 

the combined weight of twenty mediocre but virtually identical rules.  To prevent this 

problem, each ruleset is analyzed to determine which rules are dependent with other rules 

in the same ruleset. 

4.1. Definition of Rule Dependence 

1) Consider two rules RA and RB which predict the same RHS and value. 

2) Let A be the set of examples for which rule RA fires. 

3) Let B be the set of examples for which rule RB fires. 
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4) Define the overlap OAB as 

OAB =
∩
∪

A B
A B

 

 (the number of examples for which both RA and RB fire, divided by the number of 

examples for which either RA or RB fires.) 

5) If OAB > 0.5, the rules are dependent. 

 For each rule, the algorithm maintains a list of lower priority rules which are 

dependent with the rule.  This list is used in real time independence pruning (see below). 

 It would seem at first that it would be easiest to remove all dependent rules at the 

time a ruleset is created.  However, this actually degrades the quality of the ruleset.  As 

an example, assume a ruleset containing only the following two rules, and assume the 

rules are dependent: 

IF A1 = a1,2 THEN ARHS = aRHS,3 with priority 0.013 
IF A2 = a2,5 THEN ARHS = aRHS,3 with priority 0.009 
 

 Now assume we are trying to inference ARHS and that the value of A1 is currently 

unknown.  Only the second rule would be able to fire.  However, if we removed the 

second rule at the time of ruleset creation, no rules would be able to fire and we would 

not be able to inference a value for A.  We can avoid this problem by only independence 

pruning those rules which can fire for a given LHS.  This method is discussed below. 

4.2. Generation of Real-Time Dependency Information 

 As explained in the section above on generation of dependence data, all rules 

which fire for a given LHS should be independent.  However, we cannot prune rulesets 

ahead of time to remove rules without losing information.  The solution to this dilemma 
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is to keep track of which rules are dependent on other rules, and only allow rules which 

are still independent to fire.  This algorithm is described below. 

 Start by allocating and zeroing an array F, where fi is zero if rule Ri is allowed to 

fire.  Then for each rule Ri in order of decreasing Priority, 

1) If fi is non-zero, the rule is not allowed to fire.  Skip to the next rule. 

2) If the rule can’t fire, skip to the next rule. 

3) The rule can fire.  Add its weight to the weight for the RHS value it predicts. 

4) For each rule Rj in the list of rules dependent with Ri, set the corresponding fj non-

zero. 

 This algorithm is very fast, since it requires only array lookups and does no 

complex calculations.  In fact, it is faster than using the same ruleset without dependency 

information, since if a rule is forbidden from firing the program does not spend time 

determining if the rule is allowed to fire.  (With no dependency information, all rules are 

checked to see if they can fire.) 

5. Filtering and Segmentation of Rulesets 

 The measures described above are unable to take into account any additional a 

priori knowledge about the nature of the problem - for example, that harmony rules 

which use the current melody note as input are more desirable because they avoid 

dissonance between the melody and harmony.   

 Filtering is performed to force all rules in a ruleset to use a given attribute.  This is 

done when it is known that a certain attribute is key to determining the RHS value for the 

ruleset.  For example, it is very desirable for rules which determine the current chord 
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function to take into account the current melody note.  Rules which do not contain the 

desired attribute are permanently removed from the ruleset. 

 A priori knowledge of this nature can also be incorporated by segmenting rulesets 

into more- and less-desirable rules based on the presence or absence of a desired LHS 

attribute such as the current melody note (Melody0).  Rules lacking the attribute are 

removed from the primary set of rules and placed in a second "fallback" set.  Only in the 

event that no primary rules are able to fire is the secondary set allowed to fire.  This gives 

greater impact to the primary rules (since they are used first) without the loss of domain 

size (since the less desirable rules are not actually deleted). 

 Segmentation also has performance benefits.  A large number of rules can be kept 

in the fallback rulesets without significant reduction in the speed of the inferencing 

engine using the rules, because those rules are only considered a small fraction of the 

time when the primary segment fails to fire.  This is important in the application of 

musical rules to generate accompaniment in real-time. 
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CHAPTER 6 

Perception of Harmonic Errors in Bach Chorales 
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 This section discusses a psychophysics experiment performed to measure how 

listeners perceive errors in harmony.  We discuss the background and need for this 

information.  The design of the experiment is described.  We conclude with an analysis of 

the experimental data. 

1. Background 

 In developing the rule-based harmony generator, one shortcoming of the basic 

rule engine became apparent.  Some musical errors in harmony are more readily 

perceived than others.  For example, if a melody note that should be accompanied by a 

V7 chord (GBDF) is accompanied by a V chord (GBDG), the change is not likely to be 

noticeable, even to a musically proficient listener familiar with the piece.  However, if a 

melody note which should be accompanied by a I chord (CEGC) is accompanied by a 

vii07 chord (BDFA-flat), the change is easily noticeable even to someone with no 

musical training or knowledge of the piece of music in question.  Therefore, it is worse to 

make the mistake of replacing I with vii07 than it is to replace V7 with V. 

 To the rule engine, "V" and "V7" and "I" and "vii07" are all just character string 

tokens.  At each point in harmonizing a melody, the rule engine attempts to choose the 

correct token based on the input data provided to it.  The input data is also in the form of 

a list of string tokens, for melody note, previous chord, etc.  If the rule engine chooses the 

correct harmony token for a set of inputs, this is labeled correct, and if another token is 

chosen, this is labeled incorrect.  All incorrect tokens are treated as equally bad, because 

the rule engine has no way of distinguishing which mistakes are more noticeable than 

others to human listeners. 
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 A system for automated harmony which could take into account which errors are 

more readily perceived should thus sound better than a naïve system which treats all 

errors as equally bad.  This system would be designed so that the mistakes it tends to 

make are of the less noticeable variety.  While it might have a higher percentage of total 

errors in the statistical sense, it would have a much lower percentage of perceived errors.  

Studies of professional musicians (Repp, 1991) show that the majority of their technical 

errors are less noticeable because they are harmonically plausible in the context of the 

surrounding music, so there is justification for seeking a computer algorithm which 

would produce comparable results. 

 To design such a system, it is necessary to first collect data on how listeners 

perceive musical errors.  Then the system can be designed to minimize the incidences of 

errors which are more often perceived.  The following experiment attempts to build a 

table of knowledge about how listeners perceive errors in harmonic function. 

2. Experiment Overview 

2.1. Desired Output 

The desired output of this experiment is a misclassification cost table.  This is a table  

Cost(correct chord function A, corrupted chord function B) 

which represents the cost of playing chord function B when chord function A should have 

been played.  This table can be used in the development of a new rule algorithm. 

2.2. Definition of Test Examples 

 100 harmonized Bach chorales were used as input.  These were broken up into 

phrases.  A phrase consists of a series of chords ending on a fermata.  This yielded 585 
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phrases.  Of these, phrases shorter than 4 chords or longer than 20 chords were discarded.  

The shortest phrases do not provide sufficient harmonic context in which to measure 

perception of errors.  Using the longest phrases would slow down testing time, since they 

were 11-30 seconds in length, as opposed to 4-10 seconds for phrases between 4-20 

chords long.  Removal of the shortest and longest phrases left 553 phrases. 

 A test example consists of a phrase with a single erroneous chord in a random 

position.  The error is not placed in the first two chords; errors there are less noticeable 

because the harmonic context of the phrase has not been established (Thompson, 1993).  

The error is created by replacing the function for that chord with another function.  The 

bass, alto, and tenor rules from (Spangler, Goodman and Hawkins, 1998) are then fired to 

determine the voice positions for that replacement chord. 

2.3. Distribution of Test Examples 

 Of the 23 different chord functions present in the phrases, 5 were not present in a 

sufficient number of phrases to be significant.  The 18 remaining functions were divided 

into two groups: 

Group A: I, V, V7, IV, vi, ii, V7/V, vii07, iii, V/V, I7 

and 

Group B: V7/ii, V7/vi, V/vi, vii07/V, V/ii, IV/IV, v 

 Group A consists of chords in common usage, and the secondary dominants of the 

V and IV chords.  Group B are less common chords. 

 The strength of the beat an error occurs on should contribute a great deal to how 

strongly that error is perceived.  There are 4 different beat strengths used in the extended 
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figured bass representation: not on beat (n), unaccented beat (un), accented beat (ACC), 

and fermata (FERM).  To examine the effect of beat strength, we generated examples of 

each misclassification at each beat strength. 

 There were thus 18 x 4 = 72 possible combinations of source chords and beat 

strengths.  However, not all of these combinations were present in the input phrases; for 

example, there are no vii07 chords present on fermatas.  This reduced to 69 the number of 

available input combinations.  For each input combination, there were 17 chords it could 

be corrupted to, plus the trivial case where the chord was corrupted to itself.  This yields 

18 x 69 = 1242 combinations of inputs and outputs. 

 To obtain more accurate data on the more commonly occurring chords, the system 

was weighted to generate more examples of misclassifying the more common chords in 

group A.  Examples were generated using the following proportions per beat type: 

• For a chord not even reharmonized (original music), 2 examples. 

• For a chord misclassified to itself, 2 examples. 

• For a chord in group A misclassified to another chord in group A other than itself, 2 

examples. 

• For all other chord pairs, 1 example. 

 Chords which were misclassified to themselves were still re-voiced by firing the 

bass, alto, and tenor rules.  This provided a control group which would allow separation 

of the increased noticeability of corrupting a chord from the increased noticeability of re-

phrasing a chord. 



 91 

2.4. Generation of Test Examples 

 To generate the test examples,  the input phrases were arranged in random order 

in a list.  The quota of examples to generate was placed in a 3-dimensional array QUOTA 

with indices for (beat type), (correct function), (corrupt function).  Each element in that 

array contained the number of examples left to generate with that beat type and chord 

functions, initially set from 1 to 5 based on the proportions specified above.  The list of 

phrases was then scanned repeatedly with the algorithm in Figure 6.1. 

 This was done repeatedly until fewer than 5 new examples were generated on a 

complete pass through the phrase list.  This cutoff was employed to ensure that there 

were not a large number of examples generated from a few phrases that happened to 

contain some of the less common chords.  Generation of a batch of examples thus usually 

halted after 10-15 passes through the phrase list, after generating 94% to 97% of the total 

example quota. 

 Each example generated was logged by example number, then written to a 

filename consisting of 3 random letters and the 5-digit example number.  Playing the files 

in alphabetical order would thus play the examples in random order.  Furthermore, no 

information about the nature of the corrupt chord or the source phrase could be 

determined from the example filenames. 

 This process was entirely automated, allowing a separate set of examples to be 

generated for each subject.   
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For PH in PHRASES 
 

Start at random offset in phrase and scan entire phrase 
(wrapping around at the end, skipping the first 2 chords) 
 
For each chord's corresponding beat type BT and function 
CF, see if there are nonzero entries for corrupt chord in 
the column QUOTA[BT][CF] of the quota array. 
 
If there are 
 

Choose one corrupt chord type CC at random. 
 
Decrement QUOTA[BT][CF][CC]. 
 
Alter the chord function at the current position in 
the phrase from CF to CC. 
 
Fire the Major8 Bass, Tenor, and Alto rules to 
determine voice positions for the chord. 
 
Write the altered phrase to a new example file. 

Figure 6.1: Algorithm for Generating Psychophysics Examples 
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2.5. Test Procedure 

 The testing program was written to work under Windows 95, using the media 

player built into Windows to play MIDI files.  Each subject was given a copy of the 

testing program, with their own set of 1000 randomly generated examples.  When the 

subject pressed the spacebar, the program played a MIDI file of the next example.  The 

subject could press the spacebar to hear the example again, or could press a number 

between 1 and 5 to indicate how noticeable any error was, where 1 indicated no 

noticeable error and 5 indicated a very noticeable error.  The subject could also enter 

comments into the program at any time.  The test procedure was self-paced.  Subjects 

were encouraged to do 100-200 examples per sitting, using headphones if available.  If 

the subject exited and re-entered the test program, testing continued with the next 

example.  If the subject completed their batch of examples, testing continued with the 

first example of the batch.  The test program recorded the following for each example: 

• time/date 

• subject name 

• example filename 

• number of times subject played example before entering result 

• result (from 1-5) 

• any comments 

 Subjects were asked whether they played a musical instrument or had education in 

music theory.  However, this information was not used, except to verify that a group of 



 94 

subjects with varying musical training was present.  Studies by Brand (1981) have shown 

that amount of musical knowledge does not affect perception of musical errors. 

3. Results 

 Five users were tested, each with a unique set of examples.  This yielded 4394 

data points (one user did not complete the test).  The average perceived errors for chord 

function errors are shown in Table 6.1.  In the 3560 examples where errors were present, 

subjects reported an average magnitude of 2.65.  In the 690 examples where no harmonic 

errors were present but the original chords were revoiced with the bass/alto/tenor rules, 

subjects reported an average magnitude of 1.82.  In the 144 examples of uncorrupted 

Bach chorales, subjects reported an average magnitude of 1.24.   
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Table 6.1: Average Perceived Errors for Chord Pairs 

 I I7 V/V ii V7/V iii V/vi V7/vi IV vii07/V V v V7 V/ii vi V7/ii IV/IV vii07 
I 1.4 2.6 3.3 2.2 2.3 1.5 2.0 1.5 2.4 5.0 2.9 2.0 2.6 2.6 1.9 2.5 3.3 3.8 
I7 1.6 2.2 3.5 2.1 2.8 2.0 3.8 2.5 2.5 4.0 2.4 2.6 2.8 2.5 2.6 3.4 1.7 3.6 
V/V 1.7 4.1 1.5 2.0 2.2 2.8 1.8 4.5 3.0 3.5 2.4 2.2 3.2 2.8 2.6 1.0 2.7 3.4 
ii 1.7 2.5 2.7 1.7 3.2 2.4 2.7 2.3 2.2 4.0 1.9 2.6 2.2 2.6 2.9 3.0 1.0 2.5 
V7/V 2.5 3.1 1.6 1.6 1.6 2.8 5.0 3.0 2.0 3.2 2.5 2.0 2.4 4.0 1.6 2.3 3.0 3.4 
iii 1.9 3.5 2.9 2.3 2.8 2.1 2.3 1.6 2.9 2.4 3.0 2.5 2.6 3.4 2.8 2.7 3.7 4.0 
V/vi 2.3 4.0 1.5 1.6 3.3 1.3 1.6 1.2 2.8 4.8 1.8 2.0 3.2 3.4 1.7 3.3 4.0 1.8 
V7/vi 2.4 3.6 2.5 2.1 3.0 1.5 2.2 1.6 2.9 1.7 2.5 2.5 2.0 4.0 1.5 3.2 3.3 2.3 
IV 2.1 3.1 3.2 1.7 3.2 2.0 3.5 2.5 1.5 3.0 1.8 4.0 2.8 2.8 2.6 2.0 3.5 3.1 
vii07/V 2.0 3.0 1.8 2.0 1.0 2.0 3.0 3.0 2.6 2.8 3.0 1.0 2.5 3.5 2.0 1.6 3.3 4.0 
V 2.2 3.7 2.3 2.2 2.1 1.9 3.4 1.8 2.0 3.9 1.4 1.7 1.9 2.6 2.3 2.0 2.5 3.2 
v 2.5 2.8 2.0 2.4 2.7 2.0 3.5 2.8 3.6 3.8 2.3 1.6 2.8 3.5 2.0 3.3 3.0 4.0 
V7 1.5 2.8 1.2 2.2 3.0 2.3 3.2 5.0 2.1 3.9 1.8 2.8 2.2 1.0 2.7 4.3 2.6 3.7 
V/ii 2.7 3.7 2.3 2.6 4.0 2.8 3.5 2.4 2.3 4.2 3.4 2.7 3.3 2.1 2.5 2.3 2.0 4.2 
vi 3.0 3.3 2.8 1.7 2.8 2.9 3.2 1.7 2.5 3.7 2.4 2.0 2.2 2.2 1.6 2.0 3.0 2.5 
V7/ii 1.0 4.0 1.5 2.2 3.0 2.8 1.0 1.7 2.8 5.0 4.0 3.0 3.2 1.7 2.0 1.8 1.6 4.0 
IV/IV 4.0 3.5 5.0 2.0 3.8 3.0 4.0 4.0 2.5 3.8 3.0 1.4 3.3 2.3 2.6 3.4 1.6 3.3 
vii07 2.6 2.9 2.7 2.0 2.7 1.3 2.4 3.0 2.4 3.0 1.5 1.5 2.0 4.3 2.7 3.3 4.0 2.8 
 
 
 
 

Table 6.2: Average Perceived Error vs. Beat Strength 

Beat Strength Examples Average Perceived Error 
N 852 2.32 
un 1412 2.35 
ACC 1390 2.45 
FERM 612 3.23 
(overall) 4250 2.51 
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3.1. Perceived Magnitude vs. Beat Strength 

 We expected to see that errors on stronger beats would be more noticeable 

because notes on those beats are harmonically more significant in a piece of music.  Data 

from the experiment confirms this prediction.  This is shown in Table 6.2. 

3.2. Errors are Non-Symmetric 

 For two chords A and B, it is not necessarily the case that the error of 

misclassifying A→B is the same as misclassifying B→A.  This can be readily seen in the 

table above; the table is not symmetric.  This complicates efforts to map out the distances 

between two chords (since the distance from A→B is not the distance from B→A).  

Similar asymmetries in harmony have been reported by Krumhansl et al. (1982).   

 This is also not surprising given the generally accepted rules of chord transitions 

from music theory (Ottman, 1989).  If the replacement chord forms a valid chord 

transition, the error would not likely be as noticeable.  For example, replacing the middle 

chord in the progression V/V→vii07/V→V with a I chord to form V/V→I→V still forms 

a valid sequence.  Replacing the middle chord in the progression vi→I→IV with vii07/V  

to form vi→vii07/V→IV does not form a valid sequence.  There are far more places 

where vii07/V can be replaced with I than vice versa, which matches the experimental 

result that replacing vii07/V with I has a perceived error of 3.0 vs. 5.0 for the reverse 

replacement. 
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4. Summary 

 This experiment produced a table of the noticeability of errors in chord function.  

This table can be used with the error-cast measures for rule worth and weight from 

Chapter 5 to minimize the noticeability of errors generated from those rules. 
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CHAPTER 7 

A Rule-Based System for Real-Time Harmony 
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 This chapter describes a rule-based system for real-time harmony generation built 

using the techniques developed in the preceding chapters, including ruleset segmentation,  

real-time dependency pruning, and error-based rule measure. 

1.1. Input Data 

 This algorithm was trained on a set of 100 harmonized Bach chorales.  These 

were translated from MIDI format into extended figured bass using accent-based 

conversion (see Chapter 2, Section 6.2) and a window which included the current 

timestep and the previous two timesteps.  This produced a set of 7630 training examples. 

1.2. Rule Generation 

 Rulesets were generated for each attribute using the SpanRULE algorithm with 

the following settings: 

• Maximum Rules per Set = 2048. 

• Maximum Rule Order = 5. 

• Minimum Fraction Correct = 0.3. 

• Minimum Rule Priority = 0.001, using J-measure priority. 

The generated rules were weighted using the classification weight.  The Function0 rules 

were also tested using the error-cost rule weight  







+

+
y)|C(x1

C(x)1log  

from Chapter 5, Section 2.3 and the misclassification cost table generated by the 

psychophysics experiments in Chapter 6 (Table 6.1).  The diagonal of the 

misclassification cost table was set to zero for calculation of error-cost, due to the 
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requirements of the error-cost rule weight.  Another set of rules was also generated using 

both the error-cost rule weight and the error-cost rule priority. 

 Rulesets were then segmented into the sets shown in Table 7.1 and subsumption 

pruned, and real-time dependency information was generated.  Note that all of the 

segments for the Function0 rules contain the current melody note (Melody0).  In this 

case, requiring all rules to use an attribute (Melody0) did not reduce the size of the input 

domain; all examples from the testing set were still fired on by at least one of the 

remaining rules. 

1.3. Testing 

 These rulesets were tested on 1721 examples derived from 27 chorales not used in 

the training set.  Table 7.2 shows the fraction of examples correctly inferenced for each 

ruleset before and after segmentation.  Also shown is the average number of rules 

evaluated per test example; the speed of inferencing is proportional to this number. 

 To determine whether segmentation was in effect only removing lower priority 

rules, we generated a second unsegmented ruleset for each attribute, consisting of the 

highest priority rules.  This second set was limited in size so that it had the same average 

number of rules evaluated per test example as the segmented ruleset.  This set is denoted 

as "Unsegmented #2" in the table. 

 To determine whether the error-cost rule measure was reducing the noticeability 

of errors in the output of the rulesets, the total perceived error for the test examples as 

inferred by the rulesets was summed for both the classification weights and the error-cost 

weights. 
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Table 7.1: Ruleset Segments 

RHS Attribute LHS Attributes Required LHS Attributes For Segment Rules 

Function0 Melody0, Melody1, Function1, Bass1, Melody2, Function2 Melody0, Function1, Function2 180 
  Melody0, Function1 386 
  Melody0 326 
Soprano0 Melody0, Function0 Melody0, Function0 74 
Bass0 Function0, Soprano0, Function1, Bass1 Function0, Soprano0 125 
  (none) 182 
Alto0 Function0, Soprano0, Bass0, Function1, Alto1 Soprano0, Bass0 267 
  (none) 533 
Tenor0 Function0, Soprano0, Bass0, Alto0, Function1, Tenor1 Soprano0, Bass0, Alto0, Function0 52 
  Soprano0, Bass0, Alto0 164 
  (none) 115 

  

 

Table 7.2: Ruleset Performance 

Attribute Ruleset Total Rules Avg Rules/Example Correct 

Function0 Unsegmented 1721 1721 50.4% 
 Segmented 892 617 50.8% 
 Unsegmented #2 617 617 45.7% 

Soprano0 Unsegmented 74 74 94.6% 
Bass0 Unsegmented 307 307 70.1% 

 Segmented 307 162 70.5% 
 Unsegmented #2 162 162 65.5% 

Alto0 Unsegmented 800 800 63.5% 
 Segmented 800 275 63.3% 
 Unsegmented #2 275 275 59.3% 

Tenor0 Unsegmented 331 331 73.6% 
 Segmented 331 180 74.4% 
 Unsegmented #2 180 180 67.0% 
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Table 7.3: Comparison of Information Theoretic Measures with Error-Cost 
Measures 

Priority Measure Weight Examples Correct Avg Cost/Error Avg Cost/Example 
J-Measure Classification 50.8% 2.34 1.15 
J-Measure Error-Cost 51.6% 2.25 1.09 
Error-Cost Error-Cost 53.1% 2.25 1.06 
 

 

Table 7.4: Some Traditional Music Theory Rules Found in Rulesets 

Harmony rules, filtered to always use Melody0 and Function1: 
 
1. IF Melody0 E THEN Function0 I 0.83 0.89 0.0601 
 AND Function1 V 
The strongest cadence (ending) in classical harmony (G Major → C Major) 
 
3. IF Melody0 F THEN Function0 IV 0.98 3.12 0.0499 
 AND Function1 V 
Another common transition (G Major → F Major) 
 
Bass rules, filtered to always use Function0: 
 
1. IF Function1 V THEN Bass0 B1 0.98 1.59 0.0255 
 AND Function0 IV 
Combined with rule 3 above, always places the V→IV transition in first Bass 
 
3. IF Function1 V THEN Bass0 B0 0.86 0.20 0.0179 
 AND Function0 I 
Combined with rule 1 above, always places the V→I cadence in root position (the 
strongest position for an ending chord) 
 
26. IF Function0 vii07 THEN Bass0 B1 0.53 0.17 0.0098 
Always places diminished 7th chords (GBDF) in first inversion (in classical 
harmony, diminished 7th chords are always placed in inversion).  This rule is of 
lower priority because diminished 7th chords do not appear very often. 
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1.4. Analysis 

 The generated rules for harmony have a great deal of similarity to accepted 

harmonic transitions (Ottman, 1989).  Examples of these rules are shown in Table 7.4.  

Most of the common harmonic transitions listed in Ottman are present in the rulesets. 

 In all cases, segmenting the rulesets reduced the average rules fired per example 

without lowering the accuracy of the rulesets (in some cases, segmentation even 

increased accuracy by up to 4%).  Speed gains from segmentation ranged from 80% for 

Tenor0 up to 279% for Function0.  In comparison, simply reducing the size of the 

unsegmented ruleset to match the speed of the segmented ruleset reduced the number of 

correctly inferred examples by up to 6%.  Ruleset segmentation is thus an effective 

method for incorporating a priori knowledge into learned rulesets.  It provides significant 

speed increases over unsegmented rulesets with no loss of accuracy.  

 The error-cost measures for rule priority and weight perform better than the 

information theoretic measures, as shown in Table 7.3.  Using the error-cost rule weight 

both increases the accuracy of the ruleset and reduces the average cost of 

misclassifications made by the ruleset.  Using the error-cost priority further increases 

accuracy. 
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Figure 7.1: Generated Harmony for "Happy Birthday" 
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Figure 7.2: Data Flow in the Real-Time Harmonizer 
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1.5. Generated Harmony 

 Given the melody for "Happy Birthday,'' the segmented rulesets produce the 

harmony shown in Figure 7.1.  The harmony is certainly not the traditional harmony sung 

for that melody; it is closer to the Bach chorales in sound than it is to its original 

harmony, which is what we would hope for. 

1.6. Use of Generated Rules in a Real-Time Environment 

 A program was written in Microsoft Visual Basic to accept melodic input from a 

MIDI keyboard.  As each note was received, the previous timesteps of harmony were 

shifted in the input window to provide two timesteps of history, and the generated rules 

were used to produce values for the chord function and voice positions for the current 

timestep, as shown in Figure 7.2.  This information was used to construct harmony notes 

as described in Chapter 2, Section 7.  These notes were then sent to a MIDI synthesizer. 

 On a typical Intel Pentium-based personal computer, the program is able to 

generate harmony fast enough to keep up with all but the fastest performers.  The 

harmony is appropriate in most cases, especially with classical melodies.  The algorithm 

seems to have more difficulty generating harmony for melodies which are drastically 

different than the chorale melodies harmonized by Bach.  When the input melody is 

substantially different, the top (most-specialized) segments of each ruleset are often 

unable to fire since the input is outside their input domain, and the rule engine must fall 

back on the lower (more general) segments, which are also of lower information content 

and accuracy. 
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 When a given melody is repeated several times, a somewhat different harmony is 

generated each time.  This is due to the way in which results are resolved from 

conflicting rules.  The qualitative effect of this is superior to simply picking the most 

likely result at each timestep, which results in music which is somewhat monotonous. 
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CHAPTER 8 

Summary 
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 Work presented here describes the evolution of tools required to perform analysis 

of musical examples to extract rules and real-time generation of harmony based on those 

rules. 

 Existing representations for music proved unsuitable for generation of harmony 

rules.  A representation for musical information was developed to facilitate rule 

extraction.  This representation, the Extended Figured Bass, was based on a form of the 

figured bass used by many musicians and composers, including J. S. Bach.  The 

representation was extended to more explicitly specify the positions of the chord voices.  

Algorithms were developed to automatically transcribe music from the MIDI format to 

and from the Extended Figured Bass.   

 The choice of a system based on probabilistic provided several advantages over 

other knowledge systems.  Foremost among these was the explicit representation of 

knowledge, which allows for comparison with existing music theory.  Many of the 

generally accepted rules of classical harmony were found in the rulesets generated by the 

system.  The randomized process by which conflicting rules are resolved generates 

harmony which is non-deterministic, and thus more interesting.. 

 A new data mining algorithm for extracting rules from examples, SpanRULE, is 

introduced.  This algorithm performs well under a wide range of input parameters, and 

has easily determinable limits based on the amount of available memory.  In comparison 

with rule generation algorithms based on hash tables and hybrid algorithms, SpanRULE 

proved to be equally fast and more predictable. 

 Several methods were developed for improving raw rules generated from 

examples.  Error-cost rule weight and probability measures which are based on the cost 
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of mistakes made by rules were introduced.  These measures avoid a frequent 

shortcoming in learning systems of only considering the frequency of errors as opposed 

to taking into account the nature of those errors.  A method of including a priori 

knowledge about input attributes was developed.  This method, ruleset segmentation, was 

shown to provide increased accuracy and speed of inferencing. 

 In order to effectively utilize the error-cost measures developed above, it was 

necessary to perform psychophysics experiements to measure the perceived cost of errors 

in musical harmony.  These data from these experiments was used to develop a 

misclassification cost table for harmonic function. 

 The preceding techniques were used to build a system employing learned rules 

which was capable of real-time generation of harmony in response to an input melody.  

The performance of this system was analyzed, verifying the validity of the error-cost 

measures and ruleset segmentation approaches to refining extracted rules.  Finally, an 

application of this system was constructed and used to generate real-time harmony. 

 The methods developed here suggest a range of directions in which future 

research could proceed.  These methods could be applied to other styles or composers of 

music.  Preliminary research in these directions highlights several problems which will 

need to be solved.  Many styles of music, string quartets for example, are less 

harmonically compact than harmonized chorales.  To analyze these styles, new 

algorithms will need to be developed to convert them into a format conducive to rule 

extraction, and then to convert the rule output back into the original style.  This 

introduces issues with orchestration and resolving conflicts between the generated 

harmony and physical limitations of the instruments.  If similar collections of music from 
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two different composers can be analyzed, the rules generated from each composer could 

be compared to quantitatively establish differences between their styles, or  combined to 

create a new composite style embodying features of each composer.  The generated rules 

could also be used for verification of the origin of pieces of music, by measuring the 

degree to which a piece of music agrees with the rules generated from music of known 

origin. 

 Applications based on these musical rules also have potential.  For example, the 

rules could be used to develop a program to aid in education of future musicians.  A 

computerized expert could be trained on examples of a musical style.  Students 

attempting to write music in the style could then ask the expert to check their 

compositions for errors and suggest alternatives.  Because of its rule-based nature, the 

expert could also provide explanations for why its suggestions fit the style. 

 Furthermore, the algorithms for extraction and improvement of rules have many 

potential non-musical applications, from analysis of medical databases to economic 

forecasting and real-time control.  All of these can benefit from a system of explicit 

knowledge which is learned from examples and designed to minimize the cost of its 

inferences. 
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