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Abstract

Nature has evolved highly advanced systems capable of performing complex compu-

tations, adaptation, and learning using analog components. Although digital sys-

tems have significantly surpassed analog systems in terms of performing precise, high

speed, mathematical computations, digital systems cannot outperform analog sys-

tems in terms of power. Furthermore, nature has evolved techniques to deal with

imprecise analog components by using redundancy and massive connectivity. In this

thesis, analog VLSI circuits are presented for performing arithmetic functions and

for implementing neural networks. These circuits draw on the power of the analog

building blocks to perform low power and parallel computations.

The arithmetic function circuits presented are based on MOS transistors operating

in the subthreshold region with capacitive dividers as inputs to the gates. Because

the inputs to the gates of the transistors are floating, digital switches are used to

dynamically reset the charges on the floating gates to perform the computations.

Circuits for performing squaring, square root, and multiplication/division are shown.

A circuit that performs a vector normalization, based on cascading the preceding

circuits, is shown to display the ease with which simpler circuits may be combined to

obtain more complicated functions. Test results are shown for all of the circuits.

Two feedforward neural network implementations are also presented. The first

uses analog synapses and neurons with a digital serial weight bus. The chip is trained

in loop with the computer performing control and weight updates. By training with

the chip in the loop, it is possible to learn around circuit offsets. The second neural

network also uses a computer for the global control operations, but all of the local op-

erations are performed on chip. The weights are implemented digitally, and counters

are used to adjust them. A parallel perturbative weight update algorithm is used.

The chip uses multiple, locally generated, pseudorandom bit streams to perturb all

of the weights in parallel. If the perturbation causes the error function to decrease,
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the weight change is kept, otherwise it is discarded. Test results are shown of both

networks successfully learning digital functions such as AND and XOR.
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Chapter 1 Introduction

Although many applications are well suited for digital solutions, analog circuit design

continues to have an important place. The places where analog circuits are required

and excel are the places where digital equivalents cannot live up to the task. For

example, ultra high speed circuits, such as in wireless applications, require the use

of analog design techniques. Another important area where digital circuits may not

be sufficient is that of low power applications such as in biomedical, implantable

devices or portable, handheld devices. Finally, the importance of analog circuitry in

interfacing with the world will never be displaced because the world itself consists of

analog signals.

In this thesis, several circuit designs are described that fit well into the ana-

log arena. First, a set of circuits for performing basic analog calculations such as

squaring, square rooting, multiplication and division are described. These circuits

work with extremely low current levels and would fit well into applications requir-

ing ultra low power designs. Next, several circuits are presented for implementing

neural network architectures. Neural networks have proven useful in areas requiring

man-machine interactions such as handwriting or speech recognition. Although these

neural networks can be implemented with digital microprocessors, the large growth

in portable devices with limited battery life increases the need of finding custom low

power solutions. Furthermore, the area of operation of the neural network circuits

can be modified from low power to high speed to meet the needs of the specific ap-

plication. The inherent parallelism of neural networks allows a compact high speed

solution in analog VLSI.
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1.1 Overview

1.1.1 Analog Computation

In chapter 2, a brief review of analog computational circuits is given with an empha-

sis on translinear circuits. First, traditional translinear circuits are discussed which

are implemented with devices showing an exponential characteristic, such as bipolar

transistors. Next, MOS transistor versions of translinear circuits are discussed. In

subthreshold MOS translinear circuits the exponential characteristic is exploited sim-

ilarly to bipolar transistors; whereas, above threshold MOS translinear circuits use

the square law characteristic and require a different design style. Also mentioned are

translinear circuits that utilize networks of multiple, linear input elements. These

form the basis of the circuits described in the next chapter.

In chapter 3, A class of analog CMOS circuits that can be used to perform many

analog computational tasks is presented. The circuits utilize MOSFETs in their

subthreshold region as well as capacitors and switches to produce the computations.

A few basic current-mode building blocks that perform squaring, square root, and

multiplication/division are shown. This should be sufficient to gain understanding of

how to implement other power law circuits. These circuit building blocks are then

combined into a more complicated circuit that normalizes a current by the square

root of the sum of the squares (vector sum) of the currents. Each of these circuits

have switches at the inputs of their floating gates which are used to dynamically set

and restore the charges at the floating gates to proceed with the computation.

1.1.2 VLSI Neural Networks

In chapter 4, a brief review of VLSI neural networks is given. First, a discussion of

the various learning rules which are appropriate for analog VLSI implementation are

discussed. Next, some of the issues associated with analog VLSI networks is presented

such as limited precision weights and weight storage issues. Also, a brief discussion

of several VLSI neural network implementations is presented.
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In chapter 5, a VLSI feedforward neural network is presented that makes use of

digital weights and analog synaptic multipliers and neurons. The network is trained

in a chip-in-loop fashion with a host computer implementing the training algorithm.

The chip uses a serial digital weight bus implemented by a long shift register to input

the weights. The inputs and outputs of the network are provided directly at pins on

the chip. The training algorithm used is a parallel weight perturbation technique.

Training results are shown for a 2 input, 1 output network trained with an AND

function, and for a 2 input, 2 hidden layer, 1 output network trained with an XOR

function.

In chapter 6, a VLSI neural network that uses a parallel perturbative weight

update technique is presented. The network uses the same synapses and neurons

as the previous network, but all of the local, parallel, weight update computations

are performed on-chip. This includes the generation of random perturbations and

counters for updating the digital words where the weights are stored. Training results

are also shown for a 2 input, 1 output network trained with an AND function, and

for a 2 input, 2 hidden layer, 1 output network trained with an XOR function.
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Chapter 2 Analog Computation with

Translinear Circuits

There are many forms of analog computation. For example, analog circuits can per-

form many types of signal filtering including lowpass, bandpass, and highpass filters.

Operational amplifier circuits are commonly used for these tasks as well as for generic

derivative, integrator, and gain circuits. The emphasis of this chapter, however, shall

be on circuits with the ability to implement arithmetic functions such as signal mul-

tiplication, division, power law implementations, and trigonometric functions. A well

known class of circuits exists to perform such tasks called translinear circuits. The

basic idea behind using these types of circuits is that of using logarithms for con-

verting multiplications and divisions into additions and subtractions. This type of

operation was well know to users of slide rules in the past.

2.1 BJT Translinear Circuits

The earliest forms of these type of circuits were based on exploiting the exponential

current-voltage relationships of diodes or bipolar junction transistors[1][2].

For a bipolar junction transistor, the collector current, IC , as a function of its

base-emitter voltage, Vbe, is given as

IC = IS exp
(

Vbe
Ut

)

where IS is the saturation current, and Ut = kT/q is the thermal voltage, which

is approximately 26mV at room temperature. In using this formula, the base-emitter

voltage is considered the input, and the collector current is the output which performs

the exponentiation or antilog operation. It is also possible to think of the collector
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current as the input and the base-emitter voltage as the output such as in a diode

connected transistor, where the collector has a wire, or possibly a voltage buffer to

remove base current offsets, connecting it to the base. In this case, the equation can

be seen as follows:

Vbe = Ut ln
(

IC
IS

)

From here it is possible to connect the transistors, using log and antilog techniques,

to obtain various multiplication, division and power law circuits. However, it is not

always trivial to obtain the best circuit configuration for a given application. It is

also possible to obtain trigonometric functions by using other power law functional

approximations[3].

2.2 Subthreshold MOS Translinear Circuits

Because of the similarities of the subthreshold MOS transistor equation and the bipo-

lar transistor equation, it is sometimes possible to directly translate BJT translinear

circuits into subthreshold MOS translinear circuits. However, care must be taken

because of the nonidealities introduced in subthreshold MOS.

For a subthreshold MOS transistor, the drain current, Id, as a function of its

gate-source voltage, Vgs, is given as[30]

Id = Io exp
(

κVgs
Ut

)

where Io is the preexponential current factor, and κ is a process dependent pa-

rameter which is normally around 0.7. Thus, it is clear that the subthreshold MOS

transistor equation differs from the BJT equation with the introduction of the pa-

rameter κ.

Due to this extra parameter, direct copies of the functional form of BJT translinear

circuits into subthreshold MOS translinear circuits do not always lead to the same
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implemented arithmetic function. For example, for a particular circuit that performs a

square rooting operation on a current using BJTs, when converted to the subthreshold

MOS equivalent, it will actually raise the current to the κ
κ+1

power[30]. When κ = 1,

this reduces to the appropriate 1
2
power, but since normally κ ≈ 0.7, the power

becomes ≈ 0.41. Nevertheless, several types of subthreshold MOS circuits which

display κ independence do exist[4][5]. These involve a few added restrictions on the

types of translinear loop topologies allowed.

Subthreshold MOS translinear circuits are more limited in their dynamic range

than BJT translinear circuits because of entrance into strong inversion. Furthermore,

the characteristics slowly decay in the transition region from subthreshold to above

threshold. However, due to the lack of a required base current, lower power operation

may be possible with the subthreshold MOS circuits. Furthermore, easier integration

with standard digital circuits in a CMOS process is possible.

2.3 Above Threshold MOS Translinear Circuits

The ability of above threshold MOS transistors to exhibit translinear behavior has

also been demonstrated[6].

For an above threshold MOS transistor in saturation, the drain current, Id, as a

function of its gate-source voltage, Vgs, is given as

Id = K (Vgs − Vt)
2

Because of the square law characteristic used, these circuits are sometimes called

quadratic-translinear or MOS translinear to distinguish them from translinear circuits

based on exponential characteristics. Several interesting circuits have been demon-

strated such as those for performing squaring, multiplication, division, and vector

sum computation[6][10][11]. However, because of the inflexibility of the square law

compared to an exponential law, general function synthesis is usually not as straight-

forward as for exponential translinear circuits[7][9]. Although many of the circuits
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rely upon transistors in saturation, some also take advantage of transistors biased in

the triode or linear region[12].

These circuits are usually more restricted in their dynamic range than bipolar

translinear circuits. They are limited at the low end by weak inversion and at the high

end by mobility reduction[7]. Furthermore, the square-law current-voltage equation

is usually not as good an approximation to the actual circuit behavior as for both

bipolar circuits and MOS circuits that are deep within the subthreshold region. Also,

for decreasingly small submicron channel lengths, the current-voltage equation begins

to approximate a linear function more than a quadratic[8].

2.4 Translinear Circuits With Multiple Linear In-

put Elements

Another class of translinear circuits exists that involves the addition of a linear net-

work of elements used in conjunction with exponential translinear devices. The linear

elements are used to add, subtract and multiply variables by a constant. From the

point of view of log-antilog mathematics, it is clear that multiplying values by a

constant, n, can be transformed into raising a value to the n-th power. Thus, the ad-

dition of a linear network provides greater flexibility in function synthesis. When the

exponential translinear devices used are bipolar transistors, the linear networks are

usually defined by resistor networks[13][14], and when the exponential translinear de-

vices used are subthreshold MOS transistors, the linear networks are usually defined

by capacitor networks[15][16]. This class of circuits can be viewed as a generalization

of the translinear principle.
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Chapter 3 Analog Computation with

Dynamic Subthreshold Translinear

Circuits

A class of analog CMOS circuits has been presented which made use of MOS tran-

sistors operating in their subthreshold region[15][16]. These circuits use capacitively

coupled inputs to the gate of the MOSFET in a capacitive voltage divider configura-

tion. Since the gate has no DC path to ground it is floating and some means must

be used to initially set the gate charge and, hence, voltage value. The gate voltage is

initially set at the foundry by a process which puts different amounts of charge into

the oxides. Thus, when one gets a chip back from the foundry, the gate voltages are

somewhat random and must be equalized for proper circuit operation. One technique

is to expose the circuit to ultraviolet light while grounding all of the pins. This has

the effect of reducing the effective resistance of the oxide and allowing a conduction

path. Although this technique ensures that all the gate charges are equalized, it does

not always constrain the actual value of the gate voltage to a particular value. This

technique works in certain cases[17], such as when the floating gate transistors are

in a fully differential configuration, because the actual gate charge is not critical so

long as the gate charges are equalized. If the floating gate circuits are operated over

a sufficient length of time, stray charge may again begin to accumulate requiring an-

other ultraviolet exposure. For the circuits presented here it is imperative that the

initial voltages on the gates are set precisely and effectively to the same value near

the circuit ground. Therefore, a dynamic restoration technique is utilized that makes

it possible to operate the circuits indefinitely.
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VT

V1

V2

C1

C2

Figure 3.1: Capacitive voltage divider

3.1 Floating Gate Translinear Circuits

The analysis begins by describing the math that governs the implementation of these

circuits. A more thorough analysis for circuit synthesis is given elsewhere[15][16]. A

few simple circuit building blocks that should give the main idea of how to implement

other designs will be presented.

For the capacitive voltage divider shown in fig. 3.1, if all of the voltages are

initially set to zero volts and then V1 and V2 are applied, the voltage at the node VT

becomes

VT =
C1V1 + C2V2
C1 + C2

If C1 = C2 then this equation reduces to

VT =
V1
2

+
V2
2

The current-voltage relation for a MOSFET transistor operating in subthreshold

and in saturation (Vds > 4Ut, where Ut = kT/q) is given by[30]:

Ids = Ioexp(κVgs/Ut)

Using the above equation for a transistor operating in subthreshold, as well as a

capacitive voltage divider, the necessary equations of the computations desired can

be produced.

In the following formulations, all of the transistors are assumed to be identical.
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Iin,VinIref,Vref Iout

Figure 3.2: Squaring circuit

Also, all of the capacitors are of the same size.

3.1.1 Squaring Circuit

For the squaring circuit shown in figure 3.2, the I-V equations for each of the tran-

sistors can be written as follows.
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Then, these results can be combined to obtain the following:
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Iin,VinIref,Vref Iout

Figure 3.3: Square root circuit

3.1.2 Square Root Circuit

The equations for the square root circuit shown in figure 3.3 are shown similarly as

follows:
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Combining the equations then gives
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Iref,VrefIin1,Vin1 IoutIin2,Vin2

Figure 3.4: Multiplier/divider circuit

3.1.3 Multiplier/Divider Circuit

For the multiplier/divider circuit shown in figure 3.4, the calculations are again per-

formed as follows:
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(
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Iout = Iref
Iin1
Iin2

Although the input currents are labeled in such a way as to emphasize the dividing

nature of this circuit, it is possible to rename the inputs such that the divisor is the

reference current and the two currents in the numerator would be the multiplying

inputs.

Note that the divider circuit output is only valid when Iref is larger than Iin2.

This is because the gate of the transistor with current Iref is limited to the voltage

Vfgref at the gate by the current source driving Iref . Since this gate is part of a

capacitive voltage divider between Vref and Vin2, when Vin2 > Vfgref , the voltage at

the node Vref is zero and cannot go lower. Thus, no extra charge is coupled onto the

output transistors. Thus, when Iin2 > Iref , Iout ≈ Iin1.

Also, from the input/output relation, it would seem that Iin1 and Iref are in-

terchangeable inputs. Unfortunately, based on the previous discussion, whenever

Iin2 > Iin1, Iout ≈ Iref . This would mean that no divisions with fractional outputs of

Iin1

Iin2
< 1 could be performed. When such a fractional output is desired, the use of the

circuit in this configuration would not perform properly.

The preceding discussion indicates that the final simplified input/output relation

of the circuit is slightly deceptive. Care must be taken to ensure that the circuit is

operated in the proper operating region with appropriately sized inputs and reference

currents. Furthermore, when doing the analysis for similar power law circuits the

circuit designer must be aware of the charge limitations at the individual floating

gates.

A more accurate input/output relation for the multiplier/divider circuit is thus

given as follows:
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f1

f2

Iin,VinIref,Vref Iout

Figure 3.5: Dynamically restored squaring circuit

Iout =











Iref
Iin1

Iin2
if Iin2 < Iref

Iin1 if Iin2 > Iref

3.2 Dynamic Gate Charge Restoration

All of the above circuits assume that some means is available to initially set the gate

charge level so that when all currents are set to zero, the gate voltages are also zero.

One method of doing so which lends itself well to actual circuit implementation is that

of using switches to dynamically set the charge during one phase of operation, and

then to allow the circuit to perform computations during a second phase of operation.

The squaring circuit in figure 3.5 is shown with switches now added to dynami-

cally equalize the charge. A non-overlapping clock generator generates the two clock
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f1

f2

Iin,VinIref,Vref Iout

Figure 3.6: Dynamically restored square root circuit

signals. During the first phase of operation, φ1 is high and φ2 is low. This is the

reset phase of operation. Thus, the input currents do not affect the circuit and all

sides of the capacitors are discharged and the floating gates of the transistors are

also grounded and discharged. This establishes an initial condition with no current

through the transistors corresponding to zero gate voltage. Then, during the second

phase of operation, φ1 goes low and φ2 goes high. This is the compute phase of oper-

ation. The transistor gates are allowed to float, and the input currents are reapplied.

The circuit now exactly resembles the aforementioned floating gate squaring circuit.

Thus, it is able to perform the necessary computation.

The square root (figure 3.6) and multiplier/divider circuit (figure 3.7) are also

constructed in the same manner by adding switches connected to φ2 at the drains of

each of the transistors and switches connected to φ1 at each of the floating gate and
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Iref,VrefIin2,Vin2 Iout

f1

f2

Iin1,Vin1

Figure 3.7: Dynamically restored multiplier/divider circuit

capacitor terminals.

3.3 Root Mean Square (Vector Sum) Normaliza-

tion Circuit.

The above circuits can be used as building blocks and combined with current mirrors

to perform a number of useful computations. For example, a normalization stage can

be made which normalizes a current by the square root of the sum of the squares

of other currents. Such a stage is useful in many signal processing tasks. This

normalization stage is seen in figure 3.8. The reference current, Iref , is mirrored to

all of the reference inputs of the individual stages. The reference current is doubled

with the 1:2 current mirror into the divider stage. This is necessary because the

reference current must be larger than the largest current that will be divided by.

Since the current that is being divided will be the square root of a sum of squares of

two currents, when Iin1 = Iin2 = Imax, it is necessary to make sure that the reference
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current for the divider section is greater than
√
2Imax. Using the 1:2 current mirror

and setting Iref = Imax, the reference current in the divider section will be 2Imax,

which is sufficient to enforce the condition.

The first two stages that read the input currents are the squaring circuit stages.

The outputs of these stages are summed and then fed back into the square root stage

with a current mirror. The input to the square root stage is thus given by

I2in1
Iref

+
I2in2
Iref

The square root stage then performs the computation

√

√

√

√Iref

(

I2in1
Iref

+
I2in2
Iref

)

=
√

I2in1 + I2in2

The output of the square root stage is then fed into the multiplier/divider stage as

the divisor current. The reference current for the divider stage is twice the reference

current for the other stages as discussed before. The other input to the divider stage

will be a mirrored copy of one of the input currents. Thus, the output of the divider

stage is given by

2Iref
Iin1

√

I2in1 + I2in2

The output can then be fed back through another 2:1 current mirror (not shown)

to remove the factor of 2. Thus, the overall transfer function computed would be

Iout = Iref
Iin1

√

I2in1 + I2in2

The addition of other divider stages can be used to normalize other input currents.

This circuit easily extends to more variables by adding more input squaring stages

and connecting them all to the input of the current mirror that outputs to the square

root stage.
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3.4 Experimental Results

The above circuits were fabricated in a 1.2µm double poly CMOS process. All of the

pfet transistors used for the mirrors were W=16.8µ, L=6µ. The nfet switches were all

W=3.6µ, L=3.6µ. The floating gate nfets were all W=30µ, L=30µ. The capacitors

were all 2.475 pF.

The data gathered from the current squaring circuit, square root circuit and mul-

tiplier/divider circuit is shown in figures 3.9, 3.10, and 3.11, respectively. Figure 3.12

shows the data from the vector sum normalization circuit.

The solid line in the figures represents the ideal fit. The circle markers represent

the actual data points.

The circuits show good performance over several orders of magnitude in current

range. At the high end of current, the circuit deviates from the ideal when one or

more transistors leaves the subthreshold region. The subthreshold region for these

transistors is below approximately 100nA. For example, in figure 3.10, an offset from

the theoretical fit for the Iref = 100nA case is seen. Since the reference transistor

is leaving the subthreshold region, more gate voltage is necessary per amount of

current. This is because in above threshold, the current goes as the square of the

voltage; whereas, in subthreshold it follows the exponential characteristic. Since

the diode connected reference transistor sets up a slightly higher gate voltage, more

charge and, hence, more voltage is coupled onto the output transistor. This causes

the output current to be slightly larger than expected.

Extra current range at the high end can be achieved by increasing the W/L of

the transistors so that they remain subthreshold at higher current levels. The current

W/L is 1, increasing W/L to 10 would change the subthreshold current range of

these circuits to be below approximately 1µA and hence increase the high end of

the dynamic range appropriately. Leakage currents limit the low end of the dynamic

range.

Some of the anomalous points, such as those seen in figures 3.9 and 3.11, are

believed to be caused by autoranging errors in the instrumentation used to collect
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the data.

The divider circuit, as previously discussed, does not perform the division after

Iin2 > Iref , and instead outputs Iin1 as is seen in the figure.

The normalization circuit shows very good performance. This is because the

reference current and the maximum input currents were chosen to keep the divider

and all circuits within the proper subthreshold operating regions of the building block

circuits. This is helped by the compressive nature of the function.

The reference current for the normalization circuit, Iref , at the input of the refer-

ence current mirror array was set to 10nA. However, the ideal fit required a value of

14nA to be used. This was not seen in the other circuits, thus it is assumed that this

is due to the Early effect of the current mirrors. In fact, the SPICE simulations of

the circuit also predict the value of 14nA. Therefore, it is possible to use the SPICE

simulations to change the mirror transistor ratios to obtain the desired output. Since

this is merely a multiplicative effect, it is possible to simply scale the W/L of the final

output mirror stage to correct it. Alternatively, it is possible to increase the length

of the mirror transistors to reduce Early effect or to use a more complicated mirror

structure such as a cascoded mirror.

3.5 Discussion

3.5.1 Early Effects

Although setting the floating gates near the circuit ground has been the goal of the

dynamic technique discussed above, it is possible to allow the floating gate values

to be reset to something other than the circuit ground. The main effect this has

is to change the dynamic range. If the floating gates are reset to a value higher

than ground, the transistors will enter the above threshold region with smaller input

currents. In fact, in the circuits previously discussed, the switches will have a small

voltage drop across them and the floating gates are actually set slightly above ground.

It may also be possible to use a reference voltage smaller than ground in order to set
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the floating gates in such a way as to increase the dynamic range.

One problem with these circuits is the presence of a large Early effect. This effect

comes from two sources. First, the standard Early effect comes from an increase in

channel current due to channel length modulation[30]. This can be modeled by an

extra linear term that is dependent on the drain-source voltage, Vds.

Ids = Ioe

(

κVgs

Ut

)

(

1 +
Vds
Vo

)

The voltage Vo, called the Early voltage, depends on process parameters and is

directly proportional to the channel length, L. Another aspect of the Early effect

which is important for circuits with floating gates is due to the overlap capacitance of

the gate to the drain/source region of the transistor[15]. In these circuits, the main

overlap capacitance of interest is the floating gate to drain capacitance, Cfg−d. This

also depends on process parameters and is directly proportional to the width, W.

This parasitic capacitance acts as another input capacitor from the drain voltage, Vd.

In this way, the drain voltage couples onto the floating gate by an amount Vd
Cfg−d
CT

,

where CT is the total input capacitance. Since this is coupled directly onto gate, this

has an exponential effect on the current level.

The method chosen to overcome these combined Early effects is to first make the

transistors long. If L is sufficiently long, then the Early voltage, Vo, will be large and

this will reduce the contribution of the linear Early effect. This also requires increasing

the width, W, by the same amount as the length, L, to keep the same subthreshold

current levels and not lose any dynamic range. However, this increase in W increases

Cfg−d which worsens the exponential Early effect. Thus, it is necessary to further

increase the size of the input capacitors to make the total input capacitance large

compared to the floating gate to drain parasitic capacitance to reduce the impact

of the exponential Early effect. In this way, it is possible to trade circuit size for

accuracy.

It may be possible to use some of the switches as cascode transistors to reduce the

Early effect in the output transistors of the various stages. The input and reference
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transistors already have their drain voltages fixed due to the diode connection and

would not benefit from this, but the output transistor drains are allowed to go near

Vdd. This would involve not setting φ2 all the way to Vdd during the computation and

instead setting it to some lower cascode voltage. This may allow a reduction in the

size of the transistors and capacitors. Furthermore, it is important to make the input

capacitors large enough that other parasitic capacitances are very small compared to

them.

3.5.2 Clock Effects

Unlike switched capacitor circuits that require a very high clock rate compared to the

input frequencies, the clock rate for these circuits is determined solely by the leakage

rate of the switch transistors. Thus, it is possible to make the clock as slow as 1 Hz

or slower. The input can change faster than the clock rate and the output will be

valid during most of the computation phase.

The output does require a short settling period due to the presence of glitches in

the output current from charge injection by the switches. The amount of charge injec-

tion is determined by the area of the switches and is minimized with small switches.

Also making the input capacitors large with respect to the size of the switches will re-

duce the effects of the glitches by making the injected charge less effective at inducing

a voltage on the gate.

It may be possible to use a current mode filter or use two transistors in comple-

mentary phase at the output to compensate for the glitches[18].

Other techniques are also available which can improve matching characteristics

and reduce the size of the circuits. One such technique would involve using a single

transistor with a multiphase clock that can be used as a replacement for all the input

and output transistors in the building blocks[18].
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3.5.3 Speed, Accuracy Tradeoffs

It is necessary to increase the size of the input capacitors and reduce the size of

the switches in order to improve the accuracy and decrease the effect of glitches.

However, this also has an effect on the speeds at which the circuits may be operated

and the settling times of the signals. Subthreshold circuits are already limited to

low currents which in turn limits their speed of operation since it takes longer to

charge up a capacitor or gate capacitance with small currents. Thus, the increases in

input capacitance necessary to increase accuracy further limits the speed of operation.

Furthermore, the addition of a switch along the current path reduces the speed of the

circuits because of the effective on-resistance of the switch.

The switches feeding into the capacitor inputs can be viewed as a lowpass R-C

filter at the inputs of the circuits. It is possible to make the switches larger in order to

decrease the effective resistance, but this will increase the parasitic capacitance and

require an increase in the size of the input capacitors to obtain the same accuracy.

Thus, there is an inherent tradeoff between the speed of operation and the accuracy

of the circuits.

3.6 Floating Gate Versus Dynamic Comparison

As previously discussed, it is possible to use these circuits in either the purely floating

gate version or in the dynamic version. In this section, a brief comparison is made

between the advantages and disadvantages of the two design styles.

Floating gate advantages

• Larger dynamic range - The switches of the dynamic version introduce leakage

currents and offsets which reduce dynamic range.

• No glitches - The floating gate version does not suffer from the appearance of

glitches on the output and, thus, does not have the same settling time require-

ments.
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• Constant operation - The output is always valid.

• Better matching with smaller input capacitors - There are fewer parasitics be-

cause of the lack of switches, thus, it is possible to reduce the size of input

capacitors and still have good matching.

• Less area - There are fewer transistors because of the lack of switches and also

smaller input capacitors may be used.

• Less power - It is possible to go to smaller current values and, also, since there

are fewer stacked transistors, smaller operating voltages are possible. Also,

power is saved by not operating any switches.

• Faster - Since it is possible to use smaller input capacitors and there is no added

switch resistance along the current path, it is possible to operate the circuits at

higher speeds.

Dynamic advantages

• No UV radiation required - In many cases it is desirable not to introduce an

extra post processing step in order to operate the circuits. Furthermore, in

some instances, ultraviolet irradiation fails to place these circuits into a proper

subthreshold operating range and instead places the floating gate in a state

where the transistors are biased above threshold.

• Decreased packaging costs - Packaging costs are increased when it is necessary

to accommodate a UV transparent window[19].

• Robust against long term drift - Transistor threshold drift is a known problem

in CMOS circuits[20] and Flash EEPROMs[19]. Much of the threshold shift is

attributed to hot electron injection. These electrons get stuck in trap states in

the oxide, thereby causing the shift. Much effort is placed into reducing the

number of oxide traps to minimize this effect. The electrons can then exit the

oxide and normally contribute to a very small gate current. However, in floating
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gate circuits, the electrons are not removed and remain as excess charge which

leads to increased threshold drift. Furthermore, as process scales continue to

decrease, direct gate tunneling effects will further exacerbate the problem. The

dynamically restored circuits remove these excess charges during the reset phase

of operation and provide greater immunity against long term drift.

Although the advantages that the pure floating gate circuits provide outnumber those

of the dynamic circuits, the advantages afforded by the dynamic technique are of

such significant importance that many circuit designers would choose to utilize the

technique. In practice, a full consideration of each style’s constraints with respect

to the overall system design criteria would favor one or the other of the two design

styles.

3.7 Conclusion

A set of circuits for analog circuit design that may be useful for analog computation

circuits and neural network circuits has been presented. It is hoped that it is clear

from the derivations how to obtain other power law circuits that may be necessary

and how to combine them to perform useful complex calculations. The dynamic

charge restoration technique is shown to be a useful implementation of this class

of analog circuits. Furthermore, the dynamic charge restoration technique may be

applied to other floating gate computational circuits that may otherwise require initial

ultraviolet illumination or other methods to set the initial conditions.
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Chapter 4 VLSI Neural Network

Algorithms, Limitations, and

Implementations

4.1 VLSI Neural Network Algorithms

4.1.1 Backpropagation

Early work in neural networks was hindered by the problem that single layer networks

could only represent linearly separable functions[41]. Although it was known that mul-

tilayer networks could learn any boolean function and, hence, did not suffer from this

limitation, the lack of a learning rule to program multilayered networks reduced inter-

est in neural networks for some time[40]. The backpropagation algorithm[42], based

on gradient descent, provided a viable means for programming multilayer networks

and created a resurgence of interest in neural networks.

A typical sum-squared error function used for neural networks is defined as follows:

E (−→w ) =
1

2

∑

i

(Ti −Oi)
2

where Ti is the target output for input pattern i from the training set, and Oi is

the respective network output. The network output is a composite function of the

network weights and composed of the underlying neuron sigmoidal function, s(.).

In backpropagation, weight updates, ∆wij ∝ ∂E
∂wij

, are calculated for each of

the weights. The functional form of the update involves the weights themselves

propagating the errors backwards to more internal nodes, which leads to the name

backpropagation. Furthermore, the functional form of the weight update rules are

composed of derivatives of the neuron sigmoidal function. Thus, for example, if
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s(x) = tanh(ax), then the weight update rule would involve functions of the form

s′(x) = 2a (tanh(ax)) (1− tanh(ax)). For software implementations of the neural

network, the ease of computing this type of function allows an effective means to

implement the backpropagation algorithm.

However, if the hardware implementation of the sigmoidal function tends to de-

viate from an ideal function such as the tanh function, it becomes necessary to com-

pute the derivative of the function actually being implemented which may not have

a simple functional form. Otherwise, unwanted errors would get backpropagated and

accumulate. Furthermore, deviations in the multiplier circuits can add offsets which

would also accumulate and significantly reduce the ability of the network to learn.

For example, in one implementation, it was discovered that offsets of 1% degraded

the learning success rate of the XOR problem by 50%[43]. In typical analog VLSI

implementations, offsets much larger than 1% are quite common, which would lead

to seriously degraded operation.

4.1.2 Neuron Perturbation

Because of the problems associated with analog VLSI backpropagation implementa-

tions, efforts have been made to find suitable learning algorithms which are indepen-

dent of the model of the neuron[44]. For example, in the above example the neuron

was modeled as a tanh function. In a model-free learning algorithm, the functional

form of the neuron, as well as the functional form of its derivative, does not enter

into the weight update rule. Furthermore, analog implementations of the derivative

can prove difficult and implementations which avoid these difficulties are desirable.

Most of the algorithms developed for analog VLSI implementation utilize stochastic

techniques to approximate the gradients rather than to directly compute them.

One such implementation[45], called the Madaline Rule III (MR III), approximates

a gradient by applying a perturbation to the input of each neuron and then measuring

the difference in error, ∆E = E(with perturbation)-E(without perturbation). This

error is then used for the weight update rule.
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∆wij = −η
∆E

∆neti
xj

where neti is the weighted, summed input to the neuron i that is perturbed, and

xj is either a network input or a neuron output from a previous layer which feeds into

neuron i.

This weight update rule requires access to every neuron input and every neuron

output. Furthermore, multiplication/division circuitry would be required to imple-

ment the learning rule. However, no explicit derivative hardware is required, and no

assumptions are made about the neuron model.

Another variant of this method, called the virtual targets method and which is not

model-free, required the use of the neuron function derivatives in the weight update

rule[47]. The method showed good robustness against noise, but studies of the effects

of inaccurate derivative approximations were not done.

4.1.3 Serial Weight Perturbation

Another implementation which is more optimal for analog implementation involves

serially perturbing the weights rather than perturbing the neurons[23]. The weight

updates are based on a finite difference approximation to the gradient of the mean

squared error with respect to a weight. The weight update rule is given as follows:

∆wij =
E
(

wij + pertij
)

− E (wij)

pertij

This is the forward difference approximation to the gradient. For small enough

perturbations, pertij, a reasonable approximation is achieved. Smaller perturbations

provide better approximations to the gradient at the expense of very small steps in

the gradient direction which then requires many extra iterations to find the minimum.

Thus, a natural tradeoff between speed and accuracy exists.

The gradient approximation can also be improved with the central difference ap-
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proximation:

∆wij =
E
(

wij +
pertij
2

)

− E
(

wij −
pertij
2

)

pertij

However, this requires more feedforward passes of the network to obtain the error

terms. A usual implementation would use a weight update rule of the following form:

∆wij = −
η

pert

(

E
(

wij + pertij
)

− E (wij)
)

Since pert and η are both small constants, the above weight update rule merely

involves changing the weights by the error difference scaled by a small constant.

It is clear that this implementation should require simpler circuitry than the neu-

ron perturbation algorithm. The multiplication/division step is replaced by scaling

with a constant. Also, there is no need to provide access to the computations of

internal nodes. Studies have also shown that this algorithm performs better than

neuron perturbation in networks with limited precision weights[46].

4.1.4 Summed Weight Neuron Perturbation

The summed weight neuron perturbation approach[24] combines elements from both

the neuron perturbation technique and the serial weight perturbation technique. Since

the serial weight perturbation technique applies perturbations to the weights one at

a time, its computational complexity was shown to be of higher order than that of

the neuron perturbation technique.

Applying a weight perturbation to each of the weights connected to a particular

neuron is equivalent to perturbing the input of that neuron as is done in neuron

perturbation. Thus, in summed weight neuron perturbation, weight perturbations

are applied for each particular neuron, the error is then calculated and weight updates

are made using the same weight update rule as for serial weight perturbation.

This allows for a reduction in the number of feedforward passes, yet still does not

require access to the outputs of internal nodes of the network. However, this speed
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up is at the cost of increased hardware to store weight perturbations. Normally, the

weight perturbations are kept at a fixed small size, but the sign of the perturbation

is random. Thus, the weight perturbation storage can be achieved with 1 bit per

weight.

4.1.5 Parallel Weight Perturbation

The parallel weight perturbation techniques[21][25][48] extend the above methods by

simultaneously applying perturbations to all weights. The perturbed error is then

measured and compared to the unperturbed error. The same weight update rule is

then used as in the serial weight perturbation method. Thus, all of the weights are

updated in parallel.

If there are W total weights in a network, a serial weight perturbation approach

gives a factorW reduction in speed over a straight gradient descent approach because

the overall gradient is calculated based on W local approximations to the gradient.

With parallel weight perturbation, on average, there is a factor W
1

2 reduction in

speed over direct gradient descent[25]. This can be better understood if the parallel

perturbative method is thought of in analogy to Brownian motion where there is

considerable movement of the network through weight space, but with a general

guiding force in the proper direction. Thus, a speedup of W
1

2 is achieved over serial

weight perturbation. This increase in speed may not always be seen in practice

because it depends upon certain conditions being met such as the perturbation size

being sufficiently small.

It is also possible to improve the convergence properties of the network by av-

eraging over multiple perturbations for each input pattern presentation[21]. This is

feasible only if the speed of averaging over multiple perturbations is greater than the

speed of applying input patterns. This usually holds true because the input patterns

must be obtained externally; whereas, the multiple perturbations are applied locally.

Furthermore, convergence rates can be improved by using an annealing schedule

where large perturbation sizes are used initially and then reduced. In this way, large



35

weight changes are discovered first and gradually decreased to get finer and finer

resolution in approaching the minimum.

4.1.6 Chain Rule Perturbation

The chain rule perturbation method is a semi-parallel method that mixes ideas from

both serial weight perturbation and neuron perturbation[26]. In a 1 hidden layer

network, the output layer weights are first updated serially using the weight update

formula from the serial weight perturbation method. Next, a hidden layer neuron

output, ni, is perturbed by amount nperti. The effect on the error is measured and a

partial gradient term, ∆E
nperti

, is stored. This neuron output perturbation is repeated

sequentially and a partial error gradient term stored for every neuron in the hidden

layer. Then, each of the weights, wij, feeding into the hidden layer neurons are per-

turbed in parallel by an amount wpertij. The resultant change in hidden layer neuron

outputs, ∆ni, from this parallel weight perturbation is measured and then used to

calculate and store another partial gradient term, ∆ni
wpertij

, for each weight/neuron pair.

Finally, the hidden layer weights are updated in parallel according to the following

rule:

∆wij = −η
∆E

wpert
= −η ∆E

nperti

∆ni
wpertij

Hence, the name of the method comes from the analog of the weight update rule to

the chain rule in derivative calculus. For more hidden layers, the same hidden layer

weight update procedure is repeated.

This method allows a speedup over serial weight perturbation by a factor ap-

proaching the number of hidden layer neurons at the expense of the extra hardware

necessary to store the partial gradient terms. For example, in a network with i inputs,

j hidden nodes, and k outputs, the chain rule perturbation method requires k ·j+j+i

perturbations; whereas, serial perturbation requires k · j + j · i perturbations.
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4.1.7 Feedforward Method

The feedforward method is a variant of serial weight perturbation that incorporates

a direct search technique[49]. First, for a weight, wij, the direction of search is found

by applying a fraction of the perturbation. For example if 0.1pert is applied and

the error goes down, then the direction of search is positive; otherwise it is negative.

Next, in the forward phase, perturbations of size pert continue to be applied in the

direction of search until the error does not decrease or some predetermined maximum

number of forward perturbations is reached. Then, in the backward phase, a step of

size pert
2

in the reverse direction is taken. Successive backwards steps are taken with

each step decreasing by another factor of 2 until the error again goes up or another

predetermined maximum number of backward perturbations is reached. These steps

are repeated for every weight.

This method is effectively a sophisticated annealing schedule for the serial weight

perturbation method.

Many other variations and combinations of these stochastic learning rules are pos-

sible. Most of the stochastic algorithms and implementations concentrate on iterative

approaches to weight updates as discussed above, but continuous-time implementa-

tions are also possible[50].

4.2 VLSI Neural Network Limitations

4.2.1 Number of Learnable Functions with Limited Precision

Weights

Clearly in a neural network with a small, fixed number of bits per weight, the ability

of the network to classify multiple functions is limited. Assume that each weight is

comprised of b bits of information and that there are W total weights. The total

number of bits in the network is given as B = bW . Since each bit can take on only 1

of 2 values, the total number of different functions that the network can implement

is no more than 2B. In computer simulations of neural networks where floating point
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precision is used and b is on the order of 32 or 64, this is usually not a limitation to

learning. However, if b is a small number like 5, then the ability of the network to

learn a specific function may be compromised. Furthermore, 2B is merely an upper

bound. There are many different settings of the weights that will lead to the same

function. For example, the hidden neuron outputs can be permuted since the final

output of the network does not depend upon the order of the hidden layer neurons.

Also, the signs of the outputs of the hidden layer neurons can also be flipped by

adjusting the weights coming into that neuron and by also flipping the sign of the

weight on the output of the neuron to ensure the same output. In one result, the

total number of boolean functions which can be implemented is given approximately

by 2B

N !2N
for a fully connected network with N units in each layer[51].

4.2.2 Trainability with Limited Precision Weights

Several studies have been done on the effect of the number of bits per weight con-

straining the ability of a neural network to properly train[52][53][54]. Most of these

are specific to a particular learning algorithm. In one study, the effects of the number

of bits of precision on backpropagation were investigated[52]. The weight precision

for a feedforward pass of the network, the weight precision for the backpropagation

weight update calculation, and the output neuron quantization were all tested for a

range of bits. The effect of the number of bits on the ability of the network to prop-

erly converge was determined. The empirical results showed that a weight precision

of 6 bits was sufficient for feedforward operation. Also, neuron output quantization

of 6 bits was sufficient. This implies that standard analog VLSI neurons should be

sufficient for a VLSI neural network implementation. For the backpropagation weight

update calculation, at least 12 bits were required to obtain reasonable convergence.

This shows that a perturbative algorithm that relies only on feedforward operation

can be effective in training with as few as half the number of bits required for a back-

propagation implementation. Due to the increased hardware complexity necessary

to achieve the extra number of bits, the perturbative approaches will be desirable in
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analog VLSI implementations.

4.2.3 Analog Weight Storage

Due to the inherent size requirements to store and update digital weights with A/D

and D/A converters, some analog VLSI implementations concentrate on reducing

the space necessary for weight storage by using analog weights. Usually, this involves

storing weights on a capacitor. Since the capacitors slowly discharge, it is necessary to

implement some sort of scheme to continuously refresh the weight. One such scheme,

which showed long term 8 bit precision, involves quantization and refresh of the

weights by use of A/D/A converters which can be shared by multiple weights[60][61].

Other schemes involve periodic refresh by use of quantized levels defined by input

ramp functions or by periodic repetition of input training patterns[59].

Since significant space and circuit complexity overhead exists for capacitive stor-

age of weights, attempts have also been made at direct implementation of nonvolatile

analog memory. In one such implementation, a dense array of synapses is achieved

with only two transistors required per synapse[64]. The weights are stored perma-

nently on a floating gate transistor which can be updated under UV illumination. A

second drive transistor is used as a switch to sample the input drive voltage onto a

drive electrode in order to adjust the floating gate voltage, and, hence, weight value.

The weight multiplication with an input voltage is achieved by biasing the float-

ing gate transistor into the triode region which produces an output current which

is roughly proportionate to the product of its floating gate voltage, representing the

weight, and its drain to source voltage, representing the input. The use of UV illu-

mination also allowed a simple weight decay term to be introduced into the learning

rule if necessary. Another approach which also implements a dense array of synapses

based on floating gates utilized tunneling and injection of electrons onto the floating

gate rather than UV illumination[28][29]. Using this technique, only one floating gate

transistor per synapse was required. A learning rule was developed which balances

the effects of the tunneling and injection. In another approach, a 3 transistor analog
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memory cell was shown to have up to 14 bits of resolution[65]. Some of the weight

update speeds obtainable using the tunneling and injection techniques may be limited

because rapid writing of the floating gates requires large oxide currents which may

damage the oxide. Nevertheless, these techniques can be combined with dynamic

refresh techniques where weights and weight updates are quickly stored and learned

on capacitors, but eventually written into nonvolatile analog memories[66].

4.3 VLSI Neural Network Implementations

Many neural network implementations in VLSI can be found in the literature. This in-

cludes purely digital approaches, purely analog approaches and hybrid analog-digital

approaches. Although the digital implementations are more straightforward to build

using standard digital design techniques, they often scale poorly with large networks

that require many bits of precision to implement the backpropagation algorithms[57][58].

However, some size reductions can be realized by reducing the bit precision and us-

ing the stochastic learning techniques available[55][56]. Other techniques use time

multiplexed multipliers to reduce the number of multipliers necessary.

An early attempt at implementation of an analog neural network involved making

separate VLSI chip modules for the neurons, synapses and routing switches[62]. The

modules could all be interconnected and controlled by a computer. The weights

were digital and were controlled by a serial weight bus from the computer. Since

the components were modular, it could be scaled to accommodate larger networks.

However, each of the individual circuit blocks was quite large and hence was not well

suited for dense integration on a single neural network chip. For example, the circuits

for the neuron blocks consisted of three multistage operational amplifiers and three

100k resistors. The learning algorithms were based on output information from the

neurons and no circuitry for local weight updates was provided.
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4.3.1 Contrastive Neural Network Implementations

Some of the earliest VLSI implementations of neural networks were not based on

the stochastic weight update algorithms, but on contrastive weight updates[67]. The

basic idea behind a contrastive technique is to run the network in two phases. In the

first phase, a teacher signal is sent, and the outputs of the network are clamped. In

the second phase, the network outputs are unclamped and free to change. The weight

updates are based on a contrast function that measures the difference between the

clamped, teacher phase, and the unclamped, free phase.

One of the first fully integrated VLSI neural networks used one of these contrastive

techniques and showed rapid training on the XOR function[33]. The chip incorporated

a local learning rule, feedback connections and stochastic elements. The learning rule

was based on a Boltzmann machine algorithm, which uses bidirectional, asymmetric

weights[63]. Briefly, the algorithm works by checking correlations between the input

and output neuron of a synapse. Correlations are checked between a teacher phase,

where the output neurons are clamped to the correct output, and a student phase,

where the outputs are unclamped. If the teacher and student phases share the same

correlation, then no change is made to the weight. If the neurons are correlated in

the teacher phase, but not the student phase, then the weight is incremented. If

it is reversed, then the weight is decremented. The weights were stored as 5 bit

digital words. On each pattern presentation, the network weights are perturbed

with noise and the correlations counted. Although the system actually needs noise

in order to learn, the weight update rule is not based on the previously mentioned

stochastic weight update rules, but is an example of contrastive learning that requires

randomness in order to learn. Analog noise sources were used to produce the random

perturbations. Unfortunately, the gains required to amplify thermal noise caused the

system to be unstable, and highly correlated oscillations were present between all of

the noise sources. Thus, it was necessary to intermittently apply the noise sources in

order to facilitate learning. The network showed good success with a 2:2:2:1 network

learning XOR. The learning rate was shown to be over 100,000 times faster than that



41

achieved with simulations on a digital computer.

Another implementation showed a contrastive version of backpropagation[43]. The

basic idea was to also use both a clamped phase and a free phase. The weight updates

are calculated in both phases using the standard backpropagation weight update rules.

The actual weight update was taken to be the difference between the clamped weight

change and the free weight change. The use of the contrastive technique allowed a

form of backpropagation despite circuit offsets. However, this implementation was

not model free, and a derivative generator was also necessary in order to compute

the weight updates. The weights were stored as analog voltages on capacitors with

the eventual goal of using nonvolatile analog weights. Due to the size of the circuitry,

only one layer of the network was integrated on a single chip. The multilayer network

was obtained by cascading several chips together. Successful learning of the XOR

function was shown.

4.3.2 Perturbative Neural Network Implementations

A low power chip implementing the summed weight neuron perturbation algorithm

has been demonstrated[22]. The chip was designed for implantable applications which

necessitated the need for extremely low power and small area. The weights were stored

digitally and a serial weight bus was used to set the weights and weight updates. The

chip was trained in loop with a computer applying the input patterns, controlling

the serial weight bus and reading the output values for the error computation. To

reduce power, subthreshold synapses and neurons were used. The synapses consisted

of transconductance amplifiers with the weights encoded as a digital word which

set the bias current. Neurons consisted of current to voltage converters using a diode

connected transistor. They also included a few extra transistors to deal with common

mode cancelation. A 10:6:3 network was trained to distinguish two cardiac arrythmia

patterns. The chips showed a success rate with over 95% of patient data. With a 3V

supply, only 200 nW was consumed. This is a good example of a situation where an

analog VLSI neural network is very suitable as compared to a digital solution.
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Another perturbative implementation was used for training a recurrent neural

network on a continuous time trajectory[39]. A parallel perturbative method was

used with analog volatile weights and local weight refresh circuitry. Two counter-

propagating linear feedback shift registers, which were combined with a network of

XORs, were used to digitally generate the random perturbations. The weight updates

were computed locally. The global functions of error accumulation and comparison

were performed off chip. Some of the weight refresh circuitry was also implemented

off chip. The network was successfully trained to generate two quadrature phase

sinusoidal outputs.

The chain rule perturbation algorithm has also been successfully implemented on

chip[66]. The analog weights were stored dynamically and provisions were made on

the chip for nonvolatile analog storage using tunneling and injection, but its use was

not demonstrated. The weight updates were computed locally. Many of the global

functions such as error computation were also performed on the chip. Only a few

control signals from a computer were necessary for its operation. The size of the per-

turbations was externally settable. However, all perturbations seemed to be of the

same sign, thus not requiring any specialized pseudorandom number generation. The

network was shown to successfully train on XOR and other functions. However, the

error function during learning showed some very peculiar behavior. Rather than grad-

ually decreasing to a small value, the error actually increased steadily, then entered

large oscillations between the high error and near zero error. After the oscillations,

the error was close to zero and stayed there. The authors attribute this strange and

erratic behavior to the fact that a large learning rate and a large perturbation size

were used.
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Chapter 5 VLSI Neural Network with

Analog Multipliers and a Serial Digital

Weight Bus

Training an analog neural network directly on a VLSI chip provides additional benefits

over using a computer for the initial training and then downloading the weights. The

analog hardware is prone to have offsets and device mismatches. By training with

the chip in the loop, the neural network will also learn these offsets and adjust the

weights appropriately to account for them. A VLSI neural network can be applied in

many situations requiring fast, low power operation such as handwriting recognition

for PDAs or pattern detection for implantable medical devices[22].

There are several issues that must be addressed to implement an analog VLSI

neural network chip. First, an appropriate algorithm suitable for VLSI implementa-

tion must be found. Traditional error backpropagation approaches for neural network

training require too many bits of floating point precision to implement efficiently in

an analog VLSI chip. Techniques that are more suitable involve stochastic weight

perturbation[21],[23],[24],[25],[26],[27], where a weight is perturbed in a random di-

rection, its effect on the error is determined and the perturbation is kept if the error

was reduced; otherwise, the old weight is restored. In this approach, the network

observes the gradient rather than actually computing it.

Serial weight perturbation[23] involves perturbing each weight sequentially. This

requires a number of iterations that is directly proportional to the number of weights.

A significant speed-up can be obtained if all weights are perturbed randomly in paral-

lel and then measuring the effect on the error and keeping them all if the error reduces.

Both the parallel and serial methods can potentially benefit from the use of anneal-

ing the perturbation. Initially, large perturbations are applied to move the weights
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quickly towards a minimum. Then, the perturbation sizes are occasionally decreased

to achieve finer selection of the weights and a smaller error. In general, however,

optimized gradient descent techniques converge more rapidly than the perturbative

techniques.

Next, the issue of how to appropriately store the weights on-chip in a non-volatile

manner must be addressed. If the weights are simply stored as charge on a capacitor,

they will ultimately decay due to parasitic conductance paths. One method would

be to use an analog memory cell [28],[29]. This would allow directly storing the

analog voltage value. However, this technique requires using large voltages to obtain

tunneling and/or injection through the gate oxide and is still being investigated.

Another approach would be to use traditional digital storage with EEPROMs. This

would then require having A/D/A (one A/D and one D/A) converters for the weights.

A single A/D/A converter would only allow a serial weight perturbation scheme that

would be slow. A parallel scheme, which would perturb all weights at once, would

require one A/D/A per weight. This would be faster, but would require more area.

One alternative would remove the A/D requirement by replacing it with a digital

counter to adjust the weight values. This would then require one digital counter and

one D/A per weight.

5.1 Synapse

A small synapse with one D/A per weight can be achieved by first making a binary

weighted current source (Figure 5.1) and then feeding the binary weighted currents

into diode connected transistors to encode them as voltages. These voltages are then

fed to transistors on the synapse to convert them back to currents. Thus, many D/A

converters are achieved with only one binary weighted array of transistors. It is clear

that the linearity of the D/A will be poor because of matching errors between the

current source array and synapses which may be located on opposite sides of the chip.

This is not a concern because the network will be able to learn around these offsets.

The synapse[26],[22] is shown in figure 5.2. The synapse performs the weighting
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Figure 5.1: Binary weighted current source circuit
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Figure 5.2: Synapse circuit
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of the inputs by multiplying the input voltages by a weight stored in a digital word

denoted by b0 through b5. The sign bit, b5, changes the direction of current to

achieve the appropriate sign.

In the subthreshold region of operation, the transistor equation is given by[30]

Id = Id0e
κVgs/Ut

and the output of the synapse is given by[30],[22]

∆Iout = Iout+ − Iout− =







































+I0W tanh
(

κ(Vin+−Vin−)
2Ut

)

b5 = 1

−I0W tanh
(

κ(Vin+−Vin−)
2Ut

)

b5 = 0

where W is the weight of the synapse encoded by the digital word and I0 is the

least significant bit (LSB) current.

Thus, in the subthreshold linear region, the output is approximately given by

∆Iout ≈ gm∆Vin =
κI0
2Ut

W∆Vin

In the above threshold regime, the transistor equation in saturation is approxi-

mately given by

ID ≈ K(Vgs − Vt)
2

The synapse output is no longer described by a simple tanh function, but is

nevertheless still sigmoidal with a wider “linear” range.

In the above threshold linear region, the output is approximately given by

∆Iout ≈ gm∆Vin = 2
√

KI0
√
W∆Vin
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Figure 5.3: Synapse differential output current as a function of differential input
voltage for various digital weight settings

It is clear that above threshold, the synapse is not doing a pure weighting of the

input voltage. However, since the weights are learned on chip, they will be adjusted

accordingly to the necessary value. Furthermore, it is possible that some synapses will

operate below threshold while others above, depending on the choice of LSB current.

Again, on-chip learning will be able to set the weights to account for these different

modes of operation.

Figure 5.3 shows the differential output current of the synapse as a function of

differential input voltage for various digital weight settings. The input current of the

binary weighted current source was set to 100 nA. The output currents range from

the subthreshold region for the smaller weights to the above threshold region for the
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large weights. All of the curves show their sigmoidal characteristics. Furthermore, it is

clear the width of the linear region increases as the current moves from subthreshold

to above threshold. For the smaller weights, W = 4, the linear region spans only

approximately 0.2V - 0.4V. For the largest weights, W = 31, the linear range has

expanded to roughly 0.6V - 0.8V. As was discussed above, when the current range

moves above threshold, the synapse does not perform a pure linear weighting. The

largest synapse output current is not 3.1µA as would be expected from a linear

weighting of 31 × 100nA, but a smaller number. Notice that the zero crossing of

∆Iout occurs slightly positive of ∆Vin = 0. This is a circuit offset that is primarily

due to slight W/L differences of the differential input pair of the synapse, and it is

caused by minor fabrication variations.

5.2 Neuron

The synapse circuit outputs a differential current that will be summed in the neuron

circuit shown in figure 5.4. The neuron circuit performs the summation from all of the

input synapses. The neuron circuit then converts the currents back into a differential

voltage feeding into the next layer of synapses. Since the outputs of the synapse will

all have a common mode component, it is important for the neuron to have common

mode cancelation[22]. Since one side of the differential current inputs may have a

larger share of the common mode current, it is important to distribute this common

mode to keep both differential currents within a reasonable operating range.

Iin+ = Iin+d +
Iin+d + Iin−d

2
= Iin+d + Icmd

Iin− = Iin−d +
Iin+d + Iin−d

2
= Iin−d + Icmd

∆I = Iin+ − Iin− = Iin+d − Iin−d



49

Vdd

Vdd Vdd

Voffset Voffset

Iin+ Iin-Vout-Vout+

Vcm Vcm

Vgain Vgain

2:1:1

Iin+
d

Iin-
d

Icm
d

Icm
d

V
1+

V
1-

Figure 5.4: Neuron circuit
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Icm =
Iin+ + Iin−

2
=
Iin+d + Iin−d + 2Icmd

2
= 2Icmd

⇒ Iin+d = Iin+ −
Icm
2

=
∆I

2
+
Icm
2

⇒ Iin−d = Iin− −
Icm
2

= −∆I

2
+
Icm
2

If the ∆I is of equal size or larger than Icm, the transistor with Iin−d may begin

to cutoff and the above equations would not exactly hold; however, the current cutoff

is graceful and should not normally affect performance. With the common mode

signal properly equalized, the differential currents are then mirrored into the current

to voltage transformation stage. This stage effectively takes the differential input

currents and uses a transistor in the triode region to provide a differential output.

This stage will usually be operating above threshold, because the Voffset and Vcm

controls are used to ensure that the output voltages are approximately mid-rail. This

is done by simply adding additional current to the diode connected transistor stack.

Having the outputs mid-rail is important for proper biasing of the next stage of

synapses. The above threshold transistor equation in the triode region is given by

Id = 2K(Vgs − Vt − Vds
2
)Vds ≈ 2K(Vgs−Vt)Vds for small enough Vds. If K1 denotes

the prefactor with W/L of the cascode transistor and K2 denotes the same for the

transistor with gate Vout, the voltage output of the neuron will then be given by

Iin = K1(Vgain − Vt − V1)
2 ≈ K2 (2(Vout − Vt)V1)

V1 = Vgain − Vt −
√

Iin
K1
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Iin = 2K2(Vout − Vt)

(

Vgain − Vt −
√

Iin
K1

)

Vout =
Iin

2K2(Vgain − Vt)− 2

√

K2
2

K1
Iin

+ Vt

if
W1

L1
=
W2

L2
thenK1 = K2 = K,

⇒ Vout =
Iin

2K(Vgain − Vt)− 2
√
KIin

+ Vt

for small Iin,R ≈
1

2K(Vgain − Vt)

Thus, it is clear that Vgain can be used to adjust the effective gain of the stage.

Figure 5.5 shows how the neuron differential output voltage, ∆Vout, varies as a

function of differential input current for several values of Vgain. The neuron shows

fairly linear performance with a sharp bend on either side of the linear region. This

sharp bend occurs when one of the two linearized, diode connected transistors with

gate attached to Vout turns off.

Figure 5.6 displays only the positive output, Vout+ of the neuron. The diode

connected transistor, with gate attached to Vout+ turns off where the output goes flat

on the left side of the curves. This corresponds to the left bend point in figure 5.5.

Furthermore, the baseline output voltage corresponds roughly to Voffset. However, as

Voffset increases in value, its ability to increase the baseline voltage is reduced because

of the cascode transistor on its drain. At some point, especially for small values of

Vgain, the Vcm transistor becomes necessary to provide additional offset. Overall, the

neuron shows very good linear current to voltage conversion with separate gain and
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offset controls.

5.3 Serial Weight Bus

A serial weight bus is used to apply weights to the synapses. The weight bus merely

consists of a long shift register to cover all of the possible weight and threshold bits.

Figure 5.7 shows the circuit schematic of the shift register used to implement the

weight bus. The input to the serial weight bus comes from a host computer which

implements the learning algorithm. The last output bit of the shift register, Q5,

feeds into the data input, D, of the next shift register to form a long compound shift

register.

The shift register storage cell is accomplished by using two staticizer or jamb

latches[34] in series. The latch consists of two interlocked inverters. The weak in-

verter, labeled with a W in the figure, is made sufficiently weak such that a signal

coming from the main inverter and passing through the pass gate is sufficiently strong

to overpower the weak inverter and set the state. Once the pass gate is turned off,

the weak inverter keeps the current bit state. The shift register is controlled by a dual

phase nonoverlapping clock. During the read phase of operation, when φ1 is high, the

data from the previous register is read into the first latch. Then, during the write

phase of operation, when φ2 is high, the bit is written to the second latch for storage.

Figure 5.8 shows the nonoverlapping clock generator[35]. A single CLK input

comes from an off chip clock. The clock generator ensures that the two clock phases

do not overlap in order that no race conditions exist between reading and writing.

The delay inverters are made weak by making the transistors long. They set the

appropriate delay such that after one clock transitions from high to low, the next

one does not transition from low to high until after the small delay. Since the clock

lines go throughout the chip and drive long shift registers, it is necessary to make

the buffer transistors with large W/L ratios to drive the large capacitances on the

output.



55

W
j

2

j
2

Q
0

W
j

1
W

j
2

j
2

Q
1

W

D

j
1

j
1

W
j

2

j
2

Q
5

W
j

1

j
1

j
1

.
 
.
 
.

Figure 5.7: Serial weight bus shift register



56

C
L

K

j
1

j
1

j
2

j
2

D
e

la
y

 i
n

v
e

rt
e

rs
B

u
ff

e
r 

In
v

e
rt

e
rs

Figure 5.8: Nonoverlapping clock generator



57

5.4 Feedforward Network

Using the synapse and neuron circuit building blocks it is possible to construct a

multilayer feed-forward neural network. Figure 5.9 shows a figure of a 2 input, 2

hidden unit, 1 output feedforward network for training of XOR.

Note that the nonlinear squashing function is actually performed in the next layer

of synapse circuits rather than in the neuron as in a traditional neural network.

However, this is equivalent as long as the inputs to the first layer are kept within the

linear range of the synapses. For digital functions, the inputs need not be constrained

as the synapses will pass roughly the same current regardless of whether the digital

inputs are at the flat part of the synapse curve near the linear region or all the way at

the end of the flat part of the curve. Furthermore, for non-differential digital signals,

it is possible to simply tie the negative input to mid-rail and apply the standard digital

signal to the positive synapse input. The biases, or thresholds, for each neuron are

simply implemented as synapses tied to fixed bias voltages. The biases are learned in

the same way as the weights.

Also, depending on the type of network outputs desired, additional circuitry may

be needed for the final squashing function. For example, if a roughly linear output

is desired, the differential output can be taken directly from the neuron outputs.

In figure 5.9, a differential to single ended converter is shown on the output. The

gain of this converter determines the size of the linear region for the final output.

Normally, during training, a somewhat linear output with low gain is desired to have

a reasonable slope to learn the function on. However, after training, it is possible to

take the output after a dual inverter digital buffer to get a strong standard digital

signal to send off-chip or to other sections of the chip.

Figure 5.10 shows a schematic of a differential to single ended converter and a dig-

ital buffer. The differential to single ended converter is based on the same transcon-

ductance amplifier design used for the synapse. The Vb knob is used to set the bias

current of the amplifier. This bias current then controls the gain of the converter.

The gain is also controlled by sizing of the transistors.



58

b
5

b
4

b
3

b
2

b
1

b
0

V
in

+
V

in
−

i0i1i2i3i4D
1

D D
0

V
in

1+
V

in
1−

C
L

K

V
b

ia
s+

V
bi

as
−

b
5

b
4

b
3

b
2

b
1

b
0

V
in

+
V

in
−

i0i1i2i3i4D
2

D D
1

C
L

K

V
in

2+
V

in
2−

b
5

b
4

b
3

b
2

b
1

b
0

V
in

+
V

in
−

i0i1i2i3i4D
3

D D
2

Q
5

Q
4

Q
3

Q
2

Q
1

Q
0

D
C

L
K

S
h

if
t

R
eg

.

Q
5

Q
4

Q
3

Q
2

Q
1

Q
0

D
C

L
K

S
h

if
t

R
eg

.

Q
5

Q
4

Q
3

Q
2

Q
1

Q
0

D
C

L
K

S
h

if
t

R
eg

.

b
5

b
4

b
3

b
2

b
1

b
0

i4 i3 i2 i1 i0

Io
u

t+
Io

ut
−

V
in

+
V

in
−

S
yn

ap
se

b
5

b
4

b
3

b
2

b
1

b
0

i4 i3 i2 i1 i0

Io
u

t+
Io

ut
−

V
in

+
V

in
−

S
yn

ap
se

b
5

b
4

b
3

b
2

b
1

b
0

i4 i3 i2 i1 i0

Io
u

t+
Io

ut
−

V
in

+
V

in
−

S
yn

ap
se

Q
5

Q
4

Q
3

Q
2

Q
1

Q
0

D
C

L
K

S
h

if
t

R
eg

.

Q
5

Q
4

Q
3

Q
2

Q
1

Q
0

D
C

L
K

S
h

if
t

R
eg

.

Q
5

Q
4

Q
3

Q
2

Q
1

Q
0

D
C

L
K

S
h

if
t

R
eg

.

b
5

b
4

b
3

b
2

b
1

b
0

i4 i3 i2 i1 i0

Io
u

t+
Io

ut
−

V
in

+
V

in
−

S
yn

ap
se

b
5

b
4

b
3

b
2

b
1

b
0

i4 i3 i2 i1 i0

Io
u

t+
Io

ut
−

V
in

+
V

in
−

S
yn

ap
se

b
5

b
4

b
3

b
2

b
1

b
0

i4 i3 i2 i1 i0

Io
u

t+
Io

ut
−

V
in

+
V

in
−

S
yn

ap
se

b
5

b
4

b
3

b
2

b
1

b
0

V
in

+
V

in
−

i0i1i2i3i4D
4

D D
3

V
in

1+
V

in
1−

C
L

K

V
b

ia
s+

V
bi

as
−

b
5

b
4

b
3

b
2

b
1

b
0

V
in

+
V

in
−

i0i1i2i3i4D
5

D D
4

C
L

K

V
in

2+
V

in
2−

b
5

b
4

b
3

b
2

b
1

b
0

V
in

+
V

in
−

i0i1i2i3i4D
6

D D
5

Q
5

Q
4

Q
3

Q
2

Q
1

Q
0

D
C

L
K

S
h

if
t

R
eg

.

Q
5

Q
4

Q
3

Q
2

Q
1

Q
0

D
C

L
K

S
h

if
t

R
eg

.

Q
5

Q
4

Q
3

Q
2

Q
1

Q
0

D
C

L
K

S
h

if
t

R
eg

.

b
5

b
4

b
3

b
2

b
1

b
0

i4 i3 i2 i1 i0

Io
u

t+
Io

ut
−

V
in

+
V

in
−

S
yn

ap
se

b
5

b
4

b
3

b
2

b
1

b
0

i4 i3 i2 i1 i0

Io
u

t+
Io

ut
−

V
in

+
V

in
−

S
yn

ap
se

b
5

b
4

b
3

b
2

b
1

b
0

i4 i3 i2 i1 i0

Io
u

t+
Io

ut
−

V
in

+
V

in
−

S
yn

ap
se

b
5

b
4

b
3

b
2

b
1

b
0

V
in

+
V

in
−

i0i1i2i3i4D
7

D D
6

C
L

K

V
b

ia
s+

V
bi

as
−

b
5

b
4

b
3

b
2

b
1

b
0

V
in

+
V

in
−

i0i1i2i3i4D
8

D D
7

C
L

K

b
5

b
4

b
3

b
2

b
1

b
0

V
in

+
V

in
−

i0i1i2i3i4

D D
8

V
cm

V
g

ai
n

V
o

ff
se

t
V

o
ff

se
t

V
g

ai
n

V
cm

V
o

ff
se

t

V
g

ai
n

V
cm

V
cm

V
g

ai
n

V
o

ff
se

t

V
o

u
t+

V
ou

t−

Iin
+

Iin
−

N
eu

ro
n

V
cm

V
g

ai
n

V
o

ff
se

t

V
o

u
t+

V
ou

t−

Iin
+

Iin
−

N
eu

ro
n

V
cm

V
g

ai
n

V
o

ff
se

t

V
o

u
t+

V
ou

t−

Iin
+

Iin
−

N
eu

ro
n

T
ra

n
s.

A
m

p

V
+

V
− D

if
fe

re
n

ti
al

 t
o

S
in

g
le

 e
n

d
ed

C
o

n
ve

rt
er

D
ig

it
al

 B
u

ff
er

V
o

u
t

D
ig

O
u

t

Figure 5.9: 2 input, 2 hidden unit, 1 output neural network
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Figure 5.10: Differential to single ended converter and digital buffer
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Initialize Weights;

Get Error;

while(Error > Error Goal);

Perturb Weights;

Get New Error;

if (New Error < Error),

Weights = New Weights;

Error = New Error;

else

Restore Old Weights;

end

end

Figure 5.11: Parallel Perturbative algorithm

5.5 Training Algorithm

The neural network is trained by using a parallel perturbative weight update rule[21].

The perturbative technique requires generating random weight increments to adjust

the weights during each iteration. These random perturbations are then applied to

all of the weights in parallel. In batch mode, all input training patterns are applied

and the error is accumulated. This error is then checked to see if it was higher

or lower than the unperturbed iteration. If the error is lower, the perturbations are

kept, otherwise they are discarded. This process repeats until a sufficiently low error is

achieved. An outline of the algorithm is given in figure 5.11. Since the weight updates

are calculated offline, other suitable algorithms may also be used. For example, it

is possible to apply an annealing schedule wherein large perturbations are initially

applied and gradually reduced as the network settles.

5.6 Test Results

A chip implementing the above circuits was fabricated in a 1.2µm CMOS process. All

synapse and neuron transistors were 3.6µm/3.6µm to keep the layout small. The unit

size current source transistors were also 3.6µm/3.6µm. An LSB current of 100nA was
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chosen for the current source. The above neural network circuits were trained with

some simple digital functions such as 2 input AND and 2 input XOR. The results of

some training runs are shown in figures 5.12-5.13. As can be seen from the figures, the

network weights slowly converge to a correct solution. Since the training was done on

digital functions, a differential to single ended converter was placed on the output of

the final neuron. This was simply a 5 transistor transconductance amplifier. The error

voltages were calculated as a total sum voltage error over all input patterns at the

output of the transconductance amplifier. Since Vdd was 5V, the output would only

easily move to within about 0.5V from Vdd because the transconductance amplifier

had low gain. Thus, when the error gets to around 2V, it means that all of the outputs

are within about 0.5V from their respective rail and functionally correct. A double

inverter buffer can be placed at the final output to obtain good digital signals. At the

beginning of each of the training runs, the error voltage starts around or over 10V

indicating that at least 2 of the input patterns give an incorrect output.

Figure 5.12 shows the results from a 2 input, 1 output network learning an AND

function. This network has only 2 synapses and 1 bias for a total of 3 weights. The

weight values can go from -31 to +31 because of the 6 bit D/A converters used on

the synapses.

Figure 5.13 shows the results of training a 2 input, 2 hidden unit, 1 output network

with the XOR function. The weights are initialized as small random numbers. The

weights slowly diverge and the error monotonically decreases until the function is

learned. As with gradient techniques, occasional training runs resulted in the network

getting stuck in a local minimum and the error would not go all the way down.

An ideal neural network with weights appropriately chosen to implement the XOR

function is shown in figure 5.14. The inputs for the network and neuron outputs are

chosen to be (-1,+1), as opposed to (0,1). This choice is made because the actual

synapses which implement the squashing function give maximum outputs of +/- Iout.

The neurons are assumed to be hard thresholds. The function computed by each of

the neurons is given by
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Figure 5.12: Training of a 2:1 network with AND function
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Figure 5.13: Training of a 2:2:1 network with XOR function starting with small
random weights
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Figure 5.14: Network with “ideal” weights chosen for implementing XOR
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X1 X2 A B C

-1 -1 −60⇒ −1 −60⇒ −1 −10⇒ −1
-1 +1 +20⇒ +1 −20⇒ −1 +10⇒ +1
+1 -1 +20⇒ +1 −20⇒ −1 +10⇒ +1
+1 +1 +60⇒ +1 +20⇒ +1 −30⇒ −1

Table 5.1: Computations for network with “ideal” weights chosen for implementing
XOR

Out =











+1, if ((
∑

iWiXi) + t) ≥ 0

−1, if ((
∑

iWiXi) + t) < 0

Table 5.1 shows the inputs, intermediate computations, and outputs of the ideal-

ized network. It is clear that the XOR function is properly implemented. The weights

were chosen to be within the range of possible weight values, -31 to +31, of the actual

network. This ideal network would perform perfectly well with smaller weights. For

example, all of the input weights could be set to 1 as opposed to 20, and the A and

B thresholds would then be set to 1 and -1 respectively, without any change in the

network function. However, weights of large absolute value within the possible range

were chosen (20 as opposed to 1), because small weights would be within the linear

region of the synapses. Also, small weights such as +/- 1 might tend to get flipped

due to circuit offsets. A SPICE simulation was done on the actual circuit using these

ideal weights and the outputs were seen to be the correct XOR outputs.

Figure 5.15 shows the 2:2:1 network trained with XOR, but with the initial weights

chosen as the mathematically correct weights for the ideal synapses and neurons.

Although the ideal weights should, both in theory and based on simulations, start off

with correct outputs, the offsets and mismatches of the circuit cause the outputs to be

incorrect. However, since the weights start near where they should be, the error goes

down rapidly to the correct solution. This is an example of how a more complicated

network could be trained on computer first to obtain good initial weights and then

the training could be completed with the chip in the loop. Also, for more complicated
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weights
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networks, using a more sophisticated model of the synapses and neurons that more

closely approximates the actual circuit implementation would be advantageous for

computer pretraining.

5.7 Conclusions

A VLSI implementation of a neural network has been demonstrated. Digital weights

are used to provide stable weight storage. Analog multipliers are used because full

digital multipliers would occupy considerable space for large networks. Although the

functions learned were digital, the network is able to accept analog inputs and provide

analog outputs for learning other functions. A parallel perturbation technique was

used to train the network successfully on the 2-input AND and XOR functions.
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Chapter 6 A Parallel Perturbative VLSI

Neural Network

A fully parallel perturbative algorithm cannot truly be realized with a serial weight

bus, because the act of changing the weights is performed by a serial operation. Thus,

it is desirable to add circuitry to allow for parallel weight updates.

First, a method for applying random perturbation is necessary. The randomness

is necessary because it defines the direction of search for finding the gradient. Since

the gradient is not actually calculated, but observed, it is necessary to search for

the downward gradient. It is possible to use a technique which does a nonrandom

search. However, since no prior information about the error surface is known, in the

worst case a nonrandom technique would spend much more time investigating upward

gradients which the network would not follow.

A conceptually simple technique of generating random perturbations would be

to amplify the thermal noise of a diode or resistor (figure 6.1). Unfortunately, the

extremely large value of gain required for the amplifier makes the amplifier susceptible

to crosstalk. Any noise generated from neighboring circuits would also get amplified.

Since some of this noise may come from clocked digital sections, the noise would

become very regular, and would likely lead to oscillations rather than the uncorrelated

noise sources that are desired.

Such a scheme was attempted with separate thermal noise generators for each

neuron[33]. The gain required for the amplifier was nearly 1 million and highly

correlated oscillations of a few MHz were observed among all the noise generators.

Therefore, another technique is required.

Instead, the random weight increments can be generated digitally with linear

feedback shift registers that produce a long pseudorandom sequence. These random

bits are used as inputs to a counter that stores and updates the weights. The counter
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A V
noise

Figure 6.1: Amplified thermal noise of a resistor

1 2 3 n m... ... out

Figure 6.2: 2-tap, m-bit linear feedback shift register

outputs go directly to the D/A converter inputs of the synapses. If the weight updates

led to a reduction in error, the update is kept. Otherwise, an inverter block is activated

which inverts the counter inputs coming from the linear feedback shift registers. This

has the effect of restoring the original weights. A block diagram of the full neural

network circuit function is provided in figure 6.8.

6.1 Linear Feedback Shift Registers

The use of linear feedback shift registers for generating pseudorandom sequences has

been known for some time[31]. A simple 2 tap linear feedback shift register is shown

in figure 6.2. A shift register with m bits is used. In the figure shown, an XOR is

performed from bit locations m and n and its output is fed back to the input of the

shift register. In general, however, the XOR can be replaced with a multiple input

parity function from any number of input taps. If one of the feedback taps is not
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1 0 0 0

0 1 0 0
0 0 1 0
1 0 0 1
1 1 0 0
0 1 1 0
1 0 1 1
0 1 0 1
1 0 1 0
1 1 0 1
1 1 1 0
1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1
1 0 0 0

Table 6.1: LFSR with m=4, n=3 yielding 1 maximal length sequence

1 0 0 0 1 1 0 0 0 1 1 0
0 1 0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 1 1 1 1 0 1
0 1 0 1 0 1 1 1 0 1 1 0
0 0 1 0 0 0 1 1
0 0 0 1 1 0 0 1
1 0 0 0 1 1 0 0

Table 6.2: LFSR with m=4, n=2, yielding 3 possible subsequences

taken from the final bit, m, but instead the largest feedback tap number is from some

earlier bit, l, then this is equivalent to an l-bit linear feedback shift register and the

output is merely delayed by the extra m− l shift register bits.

A maximal length sequence from such a linear feedback shift register would be of

length 2M − 1 and includes all 2M possible patterns of 0’s and 1’s with the exception

of the all 0’s sequence. The all 0’s sequence is considered a dead state, because

XOR(0, 0) = 0 and the sequence never changes. It is important to note that not all

feedback tap selections will lead to maximal length sequences.

Table 6.1 shows an example of a maximal length sequence by choosing feedback

taps of positions 4 and 3 from a 4 bit LFSR. It is clear that as long as the shift register
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does not begin in the all 0’s state, it will progress through all 2M − 1 = 15 sequences

and then repeat. Table 6.2 shows an example where non-maximal length sequences

are possible by utilizing feedback taps 4 and 2 from a 4 bit LFSR. In this situation it

is possible to enter one of three possible subsequences. The initial state will determine

which subsequence is entered. There is no overlap of the subsequences so it is not

possible to transition from one to another. In this situation, the subsequence lengths

are of size 6, 6, and 3. The sum of the sizes of the subsequences equal the size of a

maximal length sequence.

It is desirable to use the maximal length sequences because they allow the longest

possible pseudorandom sequence for the given complexity of the LFSR. Thus, it is

important to choose the correct feedback taps. Tables have been tabulated which

describe the lengths of possible sequences and subsequences based on LFSR lengths

and feedback tap locations[31].

LFSRs of certain lengths cannot achieve maximal length sequences with only 2

feedback tap locations. For example, for m = 8, it is required to have an XOR(4,5,6)

to get a length 255 sequence, and, for m = 16, it is required to have XOR(4,13,15)

to obtain the length 65536 sequence[32]. Table 6.3 provides a list of LFSRs that can

obtain maximal length sequences with only 2 feedback taps[32].

It is clear that it is possible to make very long pseudorandom sequences with

moderately sized shift registers and a single XOR gate.

In applications where analog noise is desired, it is possible to low pass filter the

output of the digital pseudorandom noise sequence. This is done by using a filter

corner frequency which is much less than the clock frequency of the shift register.

6.2 Multiple Pseudorandom Noise Generators

From the previous discussion it is clear that linear feedback shift registers are a

useful technique for generating pseudorandom noise. However, a parallel perturbative

neural network requires as many uncorrelated noise sources as there are weights.

Unfortunately, an LFSR only provides one such noise source. It is not possible to use
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m n Length

3 2 7
4 3 15
5 3 31
6 5 63
7 6 127
9 5 511
10 7 1023
11 9 2047
15 14 32767
17 14 131071
18 11 262143
20 17 1048575
21 19 2097151
22 21 4194303
23 18 8388607
25 22 33554431
28 25 268435455
29 27 536870911
31 28 2147483647
33 20 8589934591
35 33 34359738367
36 25 68719476735
39 35 549755813887

Figure 6.3: Maximal length LFSRs with only 2 feedback taps
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the different taps of a single LFSR as separate noise sources because these taps are

merely the same noise pattern offset in time and thus highly correlated. One solution

would be to use one LFSR with different feedback taps and/or initial states for every

noise source required. For large networks with long training times, this approach

becomes prohibitively expensive in terms of area and possibly power required to

implement the scheme. Because of this, several approaches have been taken to resolve

the problem, many of which utilize cellular automata.

In one approach[36], they build from a standard LFSR with the addition of an

XOR network with inputs coming from the taps of an LFSR and with outputs pro-

viding the multiple noise sources. First, the analysis begins with an LFSR consisting

of shift register cells numbering a0 to aN−1, with the cell marked a0 receiving the

feedback. Each of the N units in the LFSR except for the a0 unit is given by

at+1i = ati

The first unit is described by

at0 =
N−1
⊕

i=0

cia
t
i

where ⊕ represents the modulo 2 summation and the ci are the boolean feedback

coefficients where a coefficient of 1 represents a feedback tap at that cell.

The outputs are given by

gt =
N−1
⊕

i=0

dia
t
i

A detailed discussion is given as to the appropriate choice of the ci and di coeffi-

cients to ensure good noise properties.

In another approach a standard boolean cellular automaton is used[37][38]. The

boolean cellular automaton is comprised of N unit cells, ai, wherein their state at

time t+ 1 depends only on the states of all of the unit cells at time t.
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at+1i = f
(

at0, a
t
1, ..., a

t
N−1

)

An analysis was performed to choose a cellular automaton with good independence

between output bits. The following transition rule was chosen:

at+1i = (ati+1 + ani )⊕ ati−1 ⊕ ati−1

Furthermore, every 4th bit is chosen as an output to ensure independent, unbiased,

bits.

6.3 Multiple Pseudorandom Bit Stream Circuit

Another simplified approach utilizes two counterpropagating LFSRs with an XOR

network to combine outputs from different taps to obtain uncorrelated noise[39]. For

example, figure 6.4 shows two LFSRs with m = 7, n = 6 and m = 6, n = 5. Since

the two LFSRs are counterpropagating, the length of the output sequences obtained

from the XOR network are (26 − 1)(27 − 1) = 8001 bits[31]. In the figure, the bits

are combined to provide 9 pseudorandom bit sequences. It is possible to obtain more

channels and larger sequence lengths with the use of larger LFSRs. This was the

scheme that was ultimately implemented in hardware.

6.4 Up/down Counter Weight Storage Elements

The weights in the network are represented directly as the bits of an up/down digital

counter. The output bits of the counter feed directly into the digital input word

weight bits of the synapse circuit. Updating the weights becomes a simple matter

of incrementing or decrementing the counter to the desired value. The counter used

is a standard synchronous up/down counter using full adders and registers (figure

6.5)[34].
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Figure 6.6: Full adder for up/down counter
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Figure 6.7: Counter static register

The full adder is shown in figure 6.6[34]. Since every weight requires 1 counter,

and every counter requires 1 full adder for each bit, the adders take up a considerable

amount of room. Thus, the adder is optimized for space instead of for speed. Most

of the adder transistors are made close to minimum size.

The register cell (figure 6.7) used in the counter is simply a 1 bit version of the

serial weight bus shown in figure 5.7. This register cell is both small and static, since

the output must remain valid for standard feedforward operation after learning is

complete.

6.5 Parallel Perturbative Feedforward Network

Figure 6.8 shows a block diagram of the parallel perturbative neural network circuit

operation. The synapse, binary weighted encoder and neuron circuits are the same as

those used for the serial weight bus neural network. However, instead of the synapses

interfacing with a serial weight bus, counters with their respective registers are used

to store and update the weights.

6.6 Inverter Block

The counter up/down inputs originate in the pseudorandom bit generator and pass

through an inverter block (figure 6.9). The inverter block is essentially composed of

pass gates and inverters. If the invert signal is low, the bit passes unchanged. If the

invert bit is high, then the inversion of the pseudorandom bit gets passed. Control of

the inverter block is what allows weight updates to either be kept or discarded.
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Figure 6.8: Block diagram of parallel perturbative neural network circuit
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6.7 Training Algorithm

The algorithm implemented by the network is a parallel perturbative method[21][25].

The basic idea of the algorithm is to perform a modified gradient descent search of

the error surface without calculating derivatives or using explicit knowledge of the

functional form of the neurons. The way that this is done is by applying a set of

small perturbations on the weights and measuring the effect on the network error.

In a typical perturbative algorithm, after perturbations are applied to the weights, a

weight update rule of the following form is used:

∆−→w = −η
E
(−→w +

−−→
pert

)

− E (−→w )

pert

where −→w is a weight vector of all the weights in the network,
−−→
pert is a perturbation

vector applied to the weights which is normally of fixed size, pert, but with random

signs, and η is a small parameter used to set the learning rate. Thus, the weight

update rule can be seen as based on an approximate derivative of the error functions

with respect to the weights.

∂E

∂−→w ≈ ∆E

∆−→w =
E
(−→w +

−−→
pert

)

− E (−→w )

(−→w + pert)−−→w =
E
(−→w +

−−→
pert

)

− E (−→w )

pert

However, this type of weight update rule requires weight changes which are pro-

portional to the difference in error terms. A simpler, but functionally equivalent,

weight update rule can be achieved as follows. First, the network error, E (−→w ), is

measured with the current weight vector, −→w . Next, a perturbation vector,
−−→
pert, of

fixed magnitude, but random sign is applied to the weight vector yielding a new weight

vector, −→w +
−−→
pert. Afterwards, the effect on the error, ∆E = E

(−→w +
−−→
pert

)

−E (−→w ),

is measured. If the error decreases then the perturbations are kept and the next

iteration is performed. If the error increases, the original weight vector is restored.

Thus, the weight update rule is of the following form:
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−→w t+1 =











−→w t +
−−→
pertt, if E

(−→w t +
−−→
pertt

)

< E (−→w t)

−→w t, if E
(−→w t +

−−→
pertt

)

> E (−→w t)

The use of this rule may require more iterations since it does not perform an

actual weight change every iteration and since the weight updates are not scaled

with the resulting changes in error. Nevertheless, it significantly simplifies the weight

update circuitry. For either update rule, some means must be available to apply

the weight perturbations; however, this rule does not require additional circuitry to

change the weight values proportionately with the error difference, and, instead, relies

on the same circuitry for the weight update as for applying the random perturbations.

Some extra circuitry is required to remove the perturbations when the error doesn’t

decrease, but this merely involves inverting the signs of all of the perturbations and

reapplying in order to cancel out the initial perturbation.

A pseudocode version of the algorithm is presented in figure 6.10.

6.8 Error Comparison

The error comparison section is responsible for calculating the error of the current

iteration and interfacing with a control section to implement the algorithm. Both

sections could be performed off-chip by using a computer for chip-in-loop training, as

was chosen for the current implementation. This allows flexibility in performing the

global functions necessary for implementing the training algorithm, while the local

functions are performed on-chip. However, the control section could be implemented

on chip as a standard digital section such as a finite state machine. Also, there are

several alternatives for implementing the error comparison on chip. First, the error

comparison could simply consist of analog to digital converters which would then pass

the digital information to the control block. Another approach would be to have the

error comparison section compare the analog errors directly and then output digital

control signals.
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Initialize Weights;

Get Error;

while(Error > Error Goal);

Perturb Weights;

Get New Error;

if (New Error < Error),

Error = New Error;

else

Unperturb Weights;

end

end

function Perturb Weights;

Set Invert Bit Low;

Clock Pseudorandom bit generator;

Clock counters;

function Unperturb Weights;

Set Invert Bit High;

Clock counters;

Figure 6.10: Pseudocode for parallel perturbative learning network

Ein+

Ein-

Ep+

Ep-

Eo-

Eo+

StoreEo

StoreEp

CompareE

C C
Eout

in+

in-

Vref

Figure 6.11: Error comparison section
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Figure 6.12: Error comparison operation
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A sample error comparison section is shown in figure 6.11. The section uses digital

control signals to pass error voltages onto capacitor terminals and then combines the

capacitors in such a way to subtract the error voltages. This error difference is then

compared with a reference voltage to determine if the error decreased or increased.

The output consists of a digital signal which shows the appropriate error change.

The error input terminals, Ein+ and Ein−, are connected, in sequence, to two stor-

age capacitors which are then compared. StoreEo is asserted when the unperturbed,

initial error is stored. StoreEp is asserted in order to store the perturbed error after

the weight perturbations have been applied. CompareE is asserted to compute the

error difference, and Eout shows the sign of the difference computation.

Figure 6.12 shows the operation of the error comparison section in greater detail.

In figure 6.12a, StoreEo is high and the other signals are low. The capacitor where

Ep is stored is left floating, while the inputs Ein+ and Ein− are connected to Eo+

and Eo− respectively. This stores the unperturbed error voltages on the capacitor.

Next, in figure 6.12b, StoreEp is held high while the other signals are low. In the

same manner as before, the inputs Ein+ and Ein− are connected to Ep+ and Ep−

respectively. This stores the perturbed error voltages on the capacitor. Note that the

polarities of the two storage capacitors are drawn reversed. This will facilitate the

subtraction operation in the final step. In figure 6.12c, CompareE is asserted and

the other input signals are low. The two storage capacitors are connected together

and their charges combine. The total charge, QT , across the parallel capacitors is

given as follows:

QT = Q+−Q− = C (Ep+ + Eo−)−C (Ep− + Eo+) = C ((Ep+ − Ep−)− (Eo+ − Eo−))

If both capacitors are of size C, the parallel capacitance will be of size 2C. The

voltage across the parallel capacitors can be obtained from QT = 2CVT .

Thus,

VT =
QT

2C
=

1

2
((Ep+ − Ep−)− (Eo+ − Eo−)) =

1

2
(Ep − Eo)
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Since these voltages are floating and must be referenced to some other voltage,

the combined capacitor is placed onto a voltage, Vref , which is usually chosen to be

approximately half the supply voltage to allow for the greatest dynamic range.

Also, during this step, this error difference feeds into a high gain amplifier to

perform the comparison. The high gain amplifier is shown as a differential transcon-

ductance amplifier which feeds into a double inverter buffer to output a strong digital

signal. The final output, Eout, is given as follows:

Eout =











1, if Ep > Eo

0, if Ep < Eo

where the 1 represents a digital high signal, and the 0 represents a digital low

signal.

This output can then be sent to a control section which will use it to determine

the next step in the algorithm.

The error inputs which are computed by a difference of the actual output and a

target output can be computed with a similar analog switched capacitor technique.

However, it might also be desirable to insert an absolute value computation stage.

Simple circuits for obtaining voltage absolute values can be found elsewhere[30].

Furthermore, this sample error computation stage can easily be expanded to ac-

commodate a multiple output neural network.

6.9 Test Results

In this section several sample training run results from the chip are shown. A chip

implementing the parallel perturbative neural network was fabricated in a 1.2µm

CMOS process. All synapse and neuron transistors were 3.6µm/3.6µm to keep the

layout small. The unit size current source transistors were also 3.6µm/3.6µm. An

LSB current of 100nA was chosen for the current source. The above neural network

circuits were trained with some simple digital functions such as 2 input AND and 2

input XOR. The results of some training runs are shown in figures 6.13-6.15. As can be
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seen from the figures, the network weights slowly converge to a correct solution. The

error voltages were taken directly from the voltage output of the output neuron. The

error voltages were calculated as a total sum voltage error over all input patterns. The

actual output voltage error is arbitrary and depends on the circuit parameters. What

is important is that the error goes down. The differential to single-ended converter

and a double inverter buffer can be placed at the final output to obtain good digital

signals. Also shown is a digital error signal that shows the number of input patterns

where the network gives the incorrect answer for the output. The network analog

output voltage for each pattern is also displayed.

The actual weight values were not made accessible and, thus, are not shown;

however, another implementation might also add a serial weight bus to read the

weights and to set initial weight values. This would also be useful when pretraining

with a computer to initialize the weights in a good location.

Figure 5.12 shows the results from a 2 input, 1 output network learning an AND

function. This network has only 2 synapses and 1 bias for a total of 3 weights. The

network starts with 2 incorrect outputs which is to be expected with initial random

weights. Since the AND function is a very simple function to learn, after relatively

few iterations, all of the outputs are digitally correct. However, the network continues

to train and moves the weight vector in order to better match the training outputs.

Figures 6.14 and 6.15 show the results of training a 2 input, 2 hidden unit, 1

output network with the XOR function. In both figures, although the error voltage is

monotonically decreasing, the digital error occasionally increases. This is because the

network weights occasionally transition through a region of reduced analog output

error that is used for training, but which actually increases the digital error. This

seems to be occasionally necessary for the network to ultimately reach a reduced

digital error. Both figures also show that the function is essentially learned after only

several hundred iterations. In figure 6.15, the network is allowed to continue learning.

After being stuck in a local minimum for quite some time, the network finally finds

another location where it is able to go slightly closer towards the minimum.

Some of the analog output values occasionally show a large jump from one iter-
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Figure 6.13: Training of a 2:1 network with the AND function
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Figure 6.14: Training of a 2:2:1 network with the XOR function
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Figure 6.15: Training of a 2:2:1 network with the XOR function with more iterations
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ation to another. This occurs when a weight value which is at maximum magnitude

overflows and resets to zero. The weights are merely stored in counters, and no spe-

cial circuitry was added to deal with these overflow conditions. It would require a

simple logic block to ensure that if a weight is at maximum magnitude and was incre-

mented, that it would not overflow and reset to zero. However, this circuitry would

need to be added to every weight counter and would be an unnecessary increase in

size. However, these overflow conditions should normally not be a problem. Since

the algorithm only accepts weight changes that decrease the error, if an overflow and

reset on a weight is undesirable, the weight reset will simply be discarded. In fact,

the weight reset may occasionally be useful for breaking out of local minima, where a

weight value has been pushed up against an edge which leads to a local minima, but a

sign flip or significant weight reduction is necessary to reach the global minimum. In

this type of situation, the network will be unwilling to increase the error as necessary

to obtain the global minimum.

6.10 Conclusions

A VLSI neural network implementing a parallel perturbative algorithm has been

demonstrated. Digital weights are used to provide stable weight storage. They are

stored and updated via up/down counters and registers. Analog multipliers are used

to decrease the space that a full parallel array of digital multipliers would occupy in

a large network. The network was successfully trained on the 2-input AND and XOR

functions. Although the functions learned were digital, the network is able to accept

analog inputs and provide analog outputs for learning other functions.

The chip was trained using a computer in a chip-in-loop fashion. All of the

local weight update computations and random noise perturbations were generated on

chip. The computer performed the global operations including applying the inputs,

measuring the outputs, calculating the error function and applying algorithm control

signals. This chip-in-loop configuration is the most likely to be used if the chip were

used as a fast, low power component in a larger digital system. For example, in a
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handheld PDA, it may be desirable to use a low power analog neural network to assist

in the handwriting recognition task with the microprocessor performing the global

functions.
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Chapter 7 Conclusions

7.1 Contributions

7.1.1 Dynamic Subthreshold MOS Translinear Circuits

The main contribution of this section involved the transformation of a set of floating

gate circuits useful for analog computation into an equivalent set of circuits using

dynamic techniques. This makes the circuits more robust, and easier to work with

since they do not require using ultraviolet illumination to initialize the circuits. Fur-

thermore, the simplicity with which these circuits can be combined and cascaded to

implement more complicated functions was demonstrated.

7.1.2 VLSI Neural Networks

The design of the neuron circuit, although similar to another neuron design[22], is

new. The main distinction is a change in the current to voltage conversion element

used. The previous element was a diode connected transistor. This element proved

to have too large of a gain, and, in particular, learning XOR was difficult with such

high neuron gain. Thus, a diode connected cascoded transistor with linearized gain

and a gain control stage was used instead.

The parallel perturbative training algorithm with simplified weight update rule

was used in the serial weight bus based neural network. Although many different

algorithms could have been used, such as serial weight perturbation, this was done

with an eye toward the eventual implementation of the fully parallel perturbative

implementation. Excellent training results were shown for training of a 2 input, 1

output network on the AND function and for training a 2 input, 2 hidden layer, 1

output network on the XOR function. Furthermore, an XOR network was trained

which was initialized with “ideal” weights. This was done in order to show the effects
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of circuit offsets in making the outputs initially incorrect, but also the ability to

significantly decrease the training time required by using good initial weights.

The overall system design and implementation of the fully parallel perturbative

neural network with local computation of the simplified weight update rule was also

demonstrated. Although many of the subcircuits and techniques were borrowed from

previous designs, the overall system architecture is novel. Excellent training results

were again shown for a 2 input, 1 output network trained on the AND function and

for a 2 input, 2 hidden layer, 1 output network trained on the XOR function.

Thus, the ability to learn of a neural network using analog components for imple-

mentation of the synapses and neurons and 6 bit digital weights has been successfully

demonstrated. The choice of 6 bits for the digital weights was chosen to demon-

strate that learning was possible with limited bit precision. The circuits can easily

be extended to use 8 bit weights. Using more than 8 bits may not be desirable since

the analog circuitry itself may not have significant precision to take advantage of the

extra bits per weight. Significant strides can be taken to improve the matching char-

acteristics of the analog circuits, but then the inherent benefits of using a compact,

parallel, analog implementation may be lost.

The size of the neuron cell in dimensionless units was 300λ x 96λ, the synapse was

80λ x 150λ, and the weight counter/register was 340λ x 380λ. In the 1.2µm process

used to make the test chips, λ was equal to 0.6µm. In a modern process, such as a

0.35µm process, it would be possible to make a network with over 100 neurons and

over 10,000 weights in a 1cm x 1cm chip.

7.2 Future Directions

The serial weight bus neural network and parallel perturbative neural network can be

combined. By adding a serial weight bus to the parallel perturbative neural network, it

would also make it possible to initialize the neural network with weights obtained from

computer pretraining. In a typical design cycle, significant computer simulation would

be carried out prior to circuit fabrication. Part of this simulation may involve detailed
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training runs of the network using either idealized models or full mixed-signal training

simulation with the actual circuit. With the serial weight bus, it would then make

it possible to initialize the network with the results of this simulation. Additionally,

for certain applications such as handwriting recognition, it may be desirable to train

one chip with a standard set of inputs, then read out those weights and copy them

to other chips. The next steps would also involve building larger networks for the

purposes of performing specific tasks.
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